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Review

CHARACTERIZATION OF CRYSTALLIZATION
KINETICS FROM BATCH EXPERIMENTS

Narayan S. Tavarc

Department of Chemical Engineering

University of Manchester Institute of Science and Technology

Manchester, M60 1QD England

ABSTRACT

This review outlines the techniques employed in experimental data reduction

and analysis of batch crystallizers. A process description based on batch

conservation equations describing population, mass and energy balances, both

in crystal size and volume coordinate, together with appropriate kinetic events

represented by phenomenological models and proper boundary conditions

should be used in parameter identification. A number of general and useful

techniques to extract growth and nucleation kinetics based on solution-side

and solid-side information are reviewed. Procedures for parameter

characterization for the phenomena of the growth rate dispersion and

agglomeration are assessed.
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1. INTRODUCTION

1.1 Research Trend

Crystallization in the chemical industry is of enormous economic importance.

Worldwide production rates of basic commodity products, such as sucrose,
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96 TAVARE

salt, many fertilizers and other bulk chemicals all exceed 1 M t/annum and

the demand is ever increasing. In the manufacture of these chemicals

crystallization is an important step in a process sequence and an increased

emphasis on the better integration of this step into the associated upstream

and/or downstream processing operations is therefore needed. In addition as

crystallization is a multidisciplinary subject interactions with bordering

disciplines like physical chemistry, surface, material, mineral and biological

sciences and chemical reaction engineering provide an important insight into

the subject.

Industrial crystallization research associated with basic commodity products

provided the initial impetus for continuous crystallizer studies in the early

sixties. Fundamental research on the unit operation of crystallization was

focused mainly on understanding and predicting the particulate nature of

crystalline phase, recognizing that its better understanding and control would

permit improvements of this unit operation, both as a separation and

purification technique. The initial research work has proved the central

importance of crystal size distribution in the design and performance of

industrial crystallizers and provided as a unifying theme the interrelationships

between the crystal size distribution on the one hand and crystallizer design

criteria and operating problems on the other hand. Since then CSD studies

have become a central part of industrial crystallization research.

In recent years the importance of fine chemicals and special effect high added

value materials has increased in the competitive chemical industry.

Consequently an increasing proportion of capital investment on research and

development of such speciality products is being made at the expense of

conventional large tonnage commodity products. Many speciality chemicals

such as pharmaceuticals, agrochemicals, pigments, dyestuffs, catalyst, zeolites,

proteins and food products involve crystallization or precipitation as crucial

part of their manufacture and usually require batch processing because of their

low tonnage capacity. High product purity and specific crystal size and habit

may be desirable in many instances. Crystallization is also becoming

increasingly important in many other rapidly expanding area such as

biotechnology, mineral processing, waste treatment, pollution abatement,

energy storage, new construction materials and electronic chemicals.
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ANALYSIS OF BATCH CRYSTALLIZERS 97

Batch crystallizers are extensively used in the chemical industry for the

manufacture of many high added value fine chemicals. They are generally

useful in small scale operation, especially when working with chemical systems

which are difficult to handle due perhaps to their highly viscous or toxic

properties. They are simple, flexible, require less investment and generally

involve less process development. The purpose of this review is to summarize

comprehensively our understanding of batch crystallization processes used in

crystallization research for characterization of kinetic rates. In this paper a

generalized analytical process description of a batch crystallizer, in both

crystal size and volume coordinate, is developed and its applications will be

illustrated to outline the techniques that are available to characterize

crystallization kinetic processes including agglomeration and growth rate

dispersion characteristics from batch crystallizer configurations.

Crystallization can be approached from several points of view. This review

primarily confronts solution crystallization. Over the past three decades

enormous advances in the adoption of chemical engineering approaches to

crystallization systems have paved the way in process identification analysis of

crystallization configurations.

1.2 Batch Operation

The basic steps in a crystallization process are achievement of supersaturation,

formation of crystal nuclei i.e. nucleation and their subsequent growth to form

large crystals. All these three processes may occur simultaneously in a batch

crystallizer. For the purpose of analysis crystallization in any configuration

may be considered as a competitive process from the solution-side although as

a consecutive process from the solid-side. Achievement of supersaturation

may occur by cooling, evaporation, addition of precipitant or diluent, or by

chemical reaction. Supersaturation in batch crystallization is usually

generated by any one or a combination, in series or parallel, of these four main

methods. For analysis it may be assumed that only one mode is dominant and

the operation may be characterized by the mode. In general the corresponding

analysis among different modes is, however, more or less similar and may be

generalized. In cooling crystallizers supersaturation is generated because of

the reduction in solubility with temperature; the solvent capacity of the
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98 TAVARE

system remains approximately constant. In evaporative crystallizers

supersaturation is produced by loss of solvent with subsequent reduction of

solvent capacity with time; the solubility of a salt in solvent remains almost

constant as the operation may be assumed isothermal. In dilution crystallizer

generation of supersaturation is effected by the added diluent reducing the

solute solubility and the solvent capacity of the system consequently increases

with time. In reactive crystallizers supersaturation is created as a consequence

of the production of a desired component by virtue of chemical reaction,

solubility and solvent capacity may remain constant and both reaction and

crystallization steps may be treated as occurring in series. Less conventional

techniques of supersaturation generation by reverse osmosis and extreme

pressure changes have been used. In reverse osmosis one of the ionic species is

selectively transported through the membrane to generate the desired

supersaturation while the solubility changes with the extreme pressure changes

produce supersaturation, thus creating substantial driving force for solid

deposition. Table 1 summarizes the techniques most commonly employed for

supersaturation generation in systems crystallizing from solutions.

The proper mode, i.e. the technique employed to generate the supersaturation

from a solution, is decided by the analysis of the system characteristics, yield

and economic considerations in each mode of operation. Certainly there is a

degree of flexibility in each mode of operation in order to control the

performance of crystallizer. Usually a uniformity of critical rate or variable or

optimality with respect to desired objective function can be considered. Table

2 provides a compilation of types of operation that have been reported for

batch crystallizers in the literature!

1.3 Crystallization and Precipitation

There appears no clear distinction between crystallization and precipitation

processes and the terms may be used interchangeably. The term

'crystallization' is the more general description and can be thought of as

encompassing the term 'precipitation'. The latter is difficult to define

precisely but it is generally used to describe the rapid crystallization of
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ANALYSIS OF BATCH CRYSTALLIZERS 99

Table 1: Techniques commonly used for supersaturation generation

mode

cooling

evaporation

vacuum

supersaturation

produced by

reduction in

temperature

loss of solvent

cooling, flashing

evaporation

solubility

variation

large with

temperature •

small with

temperature

moderate with

temperature

examples

potassium nitrate,

ammonium nitrate,

sucrose

sodium chloride,

ammonium sulphate,

terephthalic acid,

ammonium sulphate

sodium sulphate,

dilution adding diluent

potassium chloride,

Adipic acid

large with proteins, dyes,

diluent Pharmaceuticals,

concentration fine chemicals

reaction generation of

solute
may remain

constant

ammonium sulphate,

sodium perborate,

calcium sulphate,

speciality chemicals,

multiphase systems

sparingly soluble materials usually as a result of an irreversible chemical

reaction or physical change in the solution. Under such conditions relative

supersaturation is comparatively high, so resulting in processes in which high

nucleation rates prevail and crystal size is small. Further a precipitate
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100 TAVARE

Table 2: Types of batch operation studied in each mode

mode operating type

cooling

evaporation

dilution

reaction

natural cooling

constant cooling rate

controlled to constant supersaturation

controlled to constant supersaturation within metastable

region

size optimal control

constant evaporation rate

controlled to constant supersaturation

controlled to constant supersaturation within metastable

region

optimal control

constant diluent addition rate

constant rate of diluent concentration change

controlled to constant supersaturation

controlled to constant supersaturation within metastable

region

optimal control

various homogeneous and heterogeneous

frequently has a poorly-defined morphology. The possibilities of controlling

such processes to achieve the desired product specifications are often limited

due to the interplay between rapid kinetic events and external process

conditions. Some of these generally valid points are highlighted in Table 3.
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Table 3: Crystallization and Precipitation Processes

101

Description

Definition

Solubility

Generation of
supersaturation

Relative
supersaturation

Product morphology

Product crystal
size

Nucleation
mechanism

Nucleation rate

Nucleation order

Growth rate

Controllability

Crystallization

in general solid
phase formation

wide range, usually
medium to high

all possible modes

low

well-defined

large

secondary

low

low

wide range
0.005-0.5/im/s

controllable

Precipitation

rapid crystallization

sparingly soluble

reaction and dilution

high

ill-defined

small

primary

high

high

low
0.005-0.05/zm/s

difficult to control

2. METASTABLE ZONE WIDTH

2.1 Solution Stability

The concept of supersaturation and the existence of the so-called metastable

zone are useful in understanding the behaviour of the crystallizing system.

Ostwald2 first introduced the terms 'labile' (unstable) and 'metastable'

supersaturation, referring to supersaturated solutions in which spontaneous

deposition of solid phase, in the absence of solid nuclei, will or will not occur,

respectively. On the basis of extensive research into the relationship between

supersaturation and spontaneous crystallization Miers pointed out that there

exists supersolubility curve for every solute—solvent system which is almost
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Figure 1 Miers plot for a typical salt

parallel to the solubility curve as depicted in Miers plot for a typical salt

(Figure 1). The lower solid continuous line is the normal solubility curve for

the salt concerned. The upper broken curve, generally referred to as

supersolubility curve, represents temperatures and concentrations at which

spontaneous crystallization occurs. As the spontaneous crystallization point

depends on many variables the supersolubility curve is not so well defined as

the solubility curve and may be visualized as a narrow band located in the

supersaturation zone. Despite its ill-definition it is generally accepted that a

region of metastability exists above the solubility curve in the supersaturated

region. The Miers plot is divided into three zones:

1. The well-defined stable (undersaturated) zone where crystallization

is not possible.
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2. The variable metastable (supersaturated) zone between the solubility

and supersolubility curves where spontaneous crystallization is not

possible.

3. The unstable or labile (supersaturated) zone where spontaneous

crystallization is possible, but not inevitable.

The path followed in a crystallization process can be mapped in the

concentration-temperature plane as in the Miers plot. If a solution

represented by point G in Figure 1 is cooled without loss of solvent (line GHP)

spontaneous crystallization cannot occur until conditions represented by point

P are reached. At this point the first indication of crystallization, either

spontaneous from solution or induced by seeding, agitation or mechanical

shock, will appear and further cooling to some point D for some salts may be

necessary before crystallization can be induced. Supersaturation can also be

achieved by evaporating some of the solvent from solution. Vertical line

GH'P1 in Figure 1 represents such an evaporation operation carried out at

constant temperature. Penetration beyond the supersolubility curve may

rarely occur as the bulk of the solution is usually supersaturated to a lesser

degree than the surface from which evaporation takes place. A combination of

cooling and evaporation as shown by curve GH"P" in Figure 1 may be

employed in actual practice as in vacuum cooling.

2.2 Experimental Determination

Many studies, mainly employing cooling crystallization mode, have been

reported on the measurement of metastable zone width in the literature (see

for example Table 1 in Tavare1). Two distinct experimental techniques have

been used in their determination. In the first technique a solution of known

saturation temperature is cooled at a constant rate to a critical temperature at

which the onset of nucleation or changes in solution physical state are

detected. The difference between the critical and saturation temperatures

gives the maximum allowable undercooling for the cooling rate used. Both

temperature and supersaturation vary with time. In the second technique the

induction period, i.e. the time elapsed between the achievement of
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104 TAVARE

supersaturation and the onset of nucleation detected either by solid

appearance or change in some suitable solution physical property, is

determined as a function of supersaturation. Both temperature and

supersaturation remain constant during the experiment until the onset of

nucleation since the achievement of the initial supersaturation can generally be

accomplished quickly. The supersaturation corresponding to chosen critical

induction time may be used as a metastable zone boundary.

The metastable zone width depends not only on many factors including

temperature, cooling or evaporation rate (i.e., supersaturation generation

rate), agitation, thermal history, presence of seeds and impurities etc. but also

on the method of detection. The normally accepted metastable limit defined

as the temperature at which the given solution nucleates spontaneously and

measured in the laboratory under carefully controlled conditions is useful for

giving some indication of the relative stability of supersaturation and may

provide a guideline in choosing the actual working level of supersaturation in

the crystallizer configuration. The most important requirement however is

that it must be determined in the presence of the crystalline phase and the

actual mother liquor to be processed. The use of experimentally measured

metastable zone width in characterization of nucleation kinetics will be

discussed later in the section on parameter characterization of nucleation

process.

3. CRYSTALLIZATION KINETICS

The essence of effective characterization of crystallization kinetics and their

successful application in crystallizer design and analysis resides in the

recognition that all the kinetic events are rate processes. Although several

kinetic events are identifiable in a crystallizer operation crystallization kinetics

in the literature are conventionally characterized in terms of two dominant

rate processes, viz. crystal growth and nucleation. Both the term 'rate' and its

concept need careful definitions. At the outset it is necessary to emphasize the

distinction between process rate and rate of change while establishing kinetic
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ANALYSIS OF BATCH CRYSTALLIZERS 105

correlations as has been suggested in the analysis of multiphase reactor

systems?'4 The rate of change follows the dictionary definition as familiar

from the calculus, has derivative character and is subject to measurement.

The process rate, as used in crystal nucleation or growth rate, is just a concept

and always important in process analysis. One does not measure process rates

directly, but only arrives at their values by some combination of measurement

and theory.

Although a large fraction of efforts were directed towards developing rate

models and analytical solutions for the rate processes, both by continuous

(analytical) and discrete (numerical) mathematical methods the crystallization

literature of engineering practice is still largely based on experimental data

yielding empirical correlations. These correlating equations have been

relatively uninfluenced by theory as most theoretical solutions in most cases

provide no guidance for the functional behaviour. Most analytical solutions

are subject to uncertainty arising primarily from simplification and

idealization both in model formulation and evaluation. Uncertainty and

imprecision in experimental data may arise not only from incomplete

definition and control of experimental environment but also from errors of

measurements. Empirical observations along with theoretical support provide

a sound basis for correlating equations over wide range of variables.

3.1 Nucleation

Formation of new crystals may result from any one, or a combination, of

different mechanisms (primary, homogeneous or heterogeneous and secondary

nucleation) or by attrition. In an industrial crystallization practice secondary

nucleation has a predominant influence as indicated by the informative

experimental evidence?"7 The nucleation rate expressed as number per unit

mass of solvent per unit time may in general be expressed by the

semi—empirical equation

(1)
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106 TAVARE

The nucleation rate constant kb may be a function of many other variables, in

particular temperature, hydrodynamics, presence of impurities and perhaps

some crystal properties, and the effects of these might be incorporated in the

rate equation using suitable functional forms. The power law term fi)

represents the kth moment of the crystal size distribution present in the

crystallizer. Normally the use of the third moment, i. e. slurry concentration

or magma density, is found suitable to account for secondary nucleation

effects. Thus equation (1) with k — 3 can satisfactorily be used to represent

the nucleation rate as

B = kb M j Acb (2)

in an industrial situation. A power law term of energy input per unit

suspension volume, impeller speed or stirrer speed, representing a measure of

the fluid mechanics effect on the secondary nucleation may be incorporated in

equation (1). It is possible to specify the nucleation rate on different basis.

Sometimes it is convenient to express the nucleation rate in terms of solute

mass deposition per unit mass of solvent per unit time as

Bs = kB M j Acb (3)

Typical values of b lie between ~ 0.5 and 2.5 for secondary nucleation rates

and higher (up to 10 or so) for primary nucleation rates. In cases where the

secondary nucleation is dominant most values of j are close to unity perhaps

suggesting the dominance of collisions between crystals and stirrer or vessel

walls rather than between two crystals; occasionally much lower values of j in

secondary nucleation studies have been suggested (e. g. 0.4 for K2SO48; 0.14

for KC19). When primary nucleation mechanism is significant the influence of

the particle concentration on the nucleation rate should be absent. The range

of exponent of stirrer speed predicted by semi-theoretical secondary

nucleation models based on contact mechanisms is from 2 to 4 and of that

measured is from 0 to 8?'7 Primary nucleation rates can also be increased by

the mechanical energy inputs to the systems but may not be reduced by

reduction in contact energy. Several studies10"13 demonstrated significant
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(~3-10 fold) reductions in nucleation rates just by replacing a stainless steel

agitator with one from another soft material. It is most common practice to

determine the kinetic parameters in any nucleation correlations from empirical

observations employing established techniques.

3.2 Crystal Growth

Various theories have been evolved to represent the growth process taking

place at different magnification levels spanning from atomic to macroscopic

scale and to develop growth rate expressions theoretically. These attempts

based on certain presumptions have not yet led to convenient working

relationships for pragmatic situations. For engineering purposes in crystallizer

design and assessment the simple empirical power law relationship expressing

the specific rate of mass deposition per unit crystal surface area by

is found to be most useful. The order, g, of the overall growth process is

generally between 0 and 2.5, order around unity being the most common. In

general, the overall rate constant, kQ, depends on temperature, crystal size,

hydrodynamic situation and presence of impurities. The effect of the

temperature on the overall growth rate constant may normally be expressed

by an Arrhenius relation. Size dependence of the growth rate constant may be

attributed to hydrodynamic environments surrounding the growing crystal or

crystal surface or shape characteristics and may be expressed by one of several

models. The simple power law term as in the case of the Bransom growth rate

model may be an example of such models. The slurry voidage and intensity of

agitation may influence the characteristic turbulence and the relative crystal

solution velocity in the suspension. To account for the effect of slurry voidage

and solid fraction on the overall growth rate constant a simple empirical power

law term of the ratio of the slurry voidage to the solid fraction may be

incorporated. A power law term for stirrer speed and an exponential term of
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108 TAVARE

impurity concentration may also be included. Thus Palwe et al!4 modified
equation (4) to a general growth rate model as

R = aLf exp(- g ^ ) ( £ ) ' N* exp(kl) Acg (5)

The crystal growth rate in terms of mass deposition may be specified in terms

per unit crystal weight (i. e., kg/kg s) in crystal suspension, especially in

fluidized bed, rather than in per unit crystal surface area (i. e., kg/m2s).

Instead of mass deposition growth rate (equation (4 or 5)) it is convenient to

express it as an overall linear growth rate as

G = kg Acs (6)

It is important to note that the overall linear growth rate (used as process

rate) is specific with respect to crystal number as the mass deposition growth

rate is with respect to surface area. The consistent definition of the linear

growth rate in a multiparticulate batch system where the total number of

crystals is changing in the ensemble is time rate of change of total length of all

crystals per crystal and not the time rate of change of a crystal size.

4. PROCESS REPRESENTATION

The purpose of this section is to represent the basic process configuration

which may be useful in assessing the several techniques available for the

process identification and modes of crystaliizer operations with appropriate

modifications. Usually two types of information can be made available from a

seeded isothermal operation, the solution-side information representing the

supersaturation-time variation, i.e. the desupersaturation curve, and the

solid-side information depicting the population density as a function of time

and size. If only the solution—side information is available then the two

processes viz crystal nucleation and growth are generally assumed competitive.

The nucleation rate is expressed in terms of solute mass deposition rate per

unit mass of solvent while the growth rate is the solute deposition rate per
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ANALYSIS OF BATCH CRYSTALLIZERS 109

unit surface area. In many cases nucleation rate may be assumed negligible.
The process based only on the solution-side information will be described in
the next section.

4.1 Solution-side Information

For a constant volume isothermal batch crystallizer a supersaturation balance

can be written as

= Bs + ATR = kB Mj. Acb + kQ A T Acs (7)

In equation (7) nucleation rate defines the specific rate of solute deposition in

the nucleation process while the product of specific mass deposition rate and

specific crystal surface area represents that of the growth process. Assuming

constant crystal shape factors and negligible breakage and agglomeration the

magma density, crystal surface area, average size and slurry voidage are

defined as

M T = MTo(W/Wo) (8)

A T = ATo(W/Wo)3 (9)

L = Lo(W/Wo)3 (10)

e = l - ( W / p c V ) (11)

where

W = Wo + (Aco-Ac)S (12)

The initial values M o and ATo can be evaluated from the initial weight and

size of seed crystals through the expressions
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ATo = FWo/bcLoS) (13)

and

MTo = Wo/S (14)

The desupersaturation curve (Ac—t) for a given set of parameters can be

generated numerically by integrating the supersaturation balance equation

(equation 7). Typical desupersaturation curve and its rate curve (Ac—t)

calculated for parameters in Table 4 using the fourth order Runge Kutta with

an integration step length of 30 s is shown in Figures 2 and 3, respectively.

The smooth solid curves are drawn using the actual numerical values obtained

from the supersaturation balance equation (equation 7) using the assumed

known kinetic parameters. The simulated data points were taken from these

solid curves at suitable time intervals representing the results of experimental

measurements. In these case thirty data points were chosen; the time interval

between these points being initially 30s, increasing to 510s at the end of the

batch time. The calculated data points represent the derived from the

supersaturation balance equation (equation 7) using the estimated kinetic

parameters. The desupersaturation curve decays continuously but its rate

usually passes through a maximum in an isothermal seeded batch crystallizer

initially charged with supersaturated solution. The relative magnitude of the

growth and nucleation terms in the supersaturation balance equation

(equation 7) as defined by the ratio of the mass deposition rate by growth to

that by nucleation is important in influencing the nature of desupersaturation

and desupersaturation rate curves and its variation is included in Figure 3.

Depending on the process and kinetic parameters the overall operation may

range from no to very rapid desupersaturation, total to negligible domination

of nucleation or growth process over a part of or whole period of the process.

4.2 Solid-side Information

In the solution-side representation continuity of the supersaturation was

tacitly assumed. During an isothermal batch operation a seeded crystallizer

will however contain two types of crystals and so the general solution to the
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Table 4: Parameters used in calculation of the batch response (Figures 2—5)

Batch time, r(s) 5400

Solubility, c*(kg solute/kg solvent) 0.1243

Initial supersaturation, Aco(kg /kg solvent) 0.015

Seed size, Lo(//m) 550

Crystal density, pc(kg/m3) 2660

Solvent capacity, S(kg water) 25.46

Specific seed loading, Wo/S (kg /kg solvent) 3.9xlO~4

Volume shape factor, kv 0.525

Ratio of surface to volume shape factor, F 7.0

For solution-side information (desupersaturation curve)

Growth rate order,g 2.0

Growth rate coefficient, kG(kg/m2s(kg/kg)2) 1.0

Nucleation order, b 4

Nucleation rate coefficient, k_

(kg/kgs(kg/kg)b*i) 5 x l 0 4

Exponent of magma density, j 1.0

For solid—side information (population density curves)

Growth rate order, g 1.5

Growth rate constant, kg(m/[s (kg/kg)g]) 5.xlO"5

Nucleation order, b 3.0

Exponent of magma density, j 1.0

Nucleation rate constant, kb

(no/[kg s (kg/kg)b+jj) 1x10"

Relative nucleation to growth order, i 2.0

Relative nucleation rate constant, KR

(no/[kg s (kg/kg^m/s)1]) 4x1019
Number of grids 500
Maximum size for N crystals (/.im) 1000
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Typical desupersaturation curve (data in Table 4)

population balance equation should comprise one part representing the

population density of the seeds and the other that of nuclei subsequently

generated. It is convenient to use the convention suggested by Jones and

Mullin15 and distinguish between the seed crystals as S crystals and the nuclei

as N crystals; their respective number densities being continuous functions of

size and time. As the working solvent capacity of a batch crystallizer may be

time varying it is convenient to define the population density function, n,

based on the total solvent capacity at any time as

(15)
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Desupersaturation rate curve (data in Table 4 and Figure 2)

For a perfectly mixed batch crystallizer in which crystal breakage and

agglomeration are negligible the population balance equation for size

independent growth rate is16

da dh (16)

where n is the population density based on total solvent capacity at any time

and G is the overall linear growth rate.

The boundary condition for the nuclei population density can be represented

by the relation
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: | j = K R M , j , G i - i (17)

where i is the relative kinetic order (= b/g) and KR is the relative nucleation

rate constant (- kb/kg>). B represents the total nucleation rate defined in

terms of flux added at crystal size very close to zero in the batch at any time

t. The moment equations for N crystals obtained by moment transformation

of the population balance equation (equation 16) with respect to size are

(18)

(19)

(20)

(21)

In a batch crystallizer the rate of solid deposition based on the total solvent

capacity at any time on the S crystals alone is

d\Vc 3W0L2G
— T - 5 - (22)

while that for the N crystals will be

NG (23)

The supersaturation balance for this configuration can therefore be written as

J A d\V_ dWx,dAc s , N
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The solute mass balance for this configuration in terms of the total mass

deposition of the solute can be expressed as

<*»

The variation of the largest nuclei size starting from L = 0 at t = 0 can be

represented as

ar = G (M)

The population balance equation coupled with the supersaturation or mass

balance equation through the set of moment equations represents

mathematically the batch crystallizer configuration generally used in

determination of crystallization performance characteristics.

For a non-isothermal batch crystallizer operation the additional balance

equation needs to be considered. In the case of a cooling crystallizer the heat

needs to be removed from the system while it is supplied at a desired rate to

evaporate the solvent in an evaporative crystallizer as a process requirement.

In some cases there may be additional energy requirement due to process heat

sinks or sources released as heat of crystallization and/or heat of reaction.

Generally simple expressions for solubility variation with temperature, rates

for cooling, evaporation or dilution are used for analysis in a given mode of

operation. For real systems operated in a batch crystallizer complex relations

and combinations of different modes in series and/or parallel may be

encountered.

4.3 The Batch Population Density Function

To determine the batch population density as a function of time and size the

population balance equation describing the batch crystallizer (e.g. equation

16) must be solved under the constraints of batch operation. A number of

solution techniques are available and some of the important analytical and
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Figure 4 Typical desupersaturation curve (data in Table 4)

numerical methods are now available (see for example Table 4, Tavare17). In

general the use of analytical solution techniques is restricted to linear systems

or to those that can be linearized in some way. Development of a generalized

numerical technique to solve the set of equations describing the batch

crystallizer configuration is important and relatively little work has been

reported in the literature. Garside and Tavare18'19 developed a numerical

algorithm to solve the population balance equation (e.g. equation 16) by the

method of numerical integration along the characteristics in conjunction with

the supersaturation balance (e.g. equation 24) coupled by the moment
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Figure 5 Evolution of population density with time (data in Table 4)

equations (equations 18-21). The resulting desupersaturation curve and the

evolution of the size distribution with time, for the particular set of

physicochemical parameters listed in Table 4 and calculated by the numerical

algorithm using an overall time interval of 1000s for the crystal size

distributions, are depicted in Figures 4 and 5 respectively. Again the solid

curves represent the numerical solutions obtained using the assumed known

kinetic parameters whereas the dotted curves derived from the estimated

kinetic parameters. The particular characteristics of population density plot
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Figure 6 Kinetic data collection techniques

will of course depend on the the specific parameters used in the algorithm. It

is rather difficult to solve the population balance equation for complex batch

operations especially when nonlinear or higher order terms are included.

Special precautions should be taken in handling weak solutions (i.e. solutions

with shocks or discontinuities).

5. DETERMINATION OF CRYSTALLIZATION KINETICS

In recent years there has been an increasing recognition to the importance of

crystallization kinetics in assessing the design and performance of crystallizers.

The characterization of crystallization kinetics in an environment typical of

that encountered in industrial situations is therefore of utmost importance.

Numerous techniques have been devised to measure and analyze crystal

growth and, to a far lesser extent, nucleation. The experimental techniques
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developed to extract crystallization parameters as depicted in Figure 6 are

based on phenomenological models and are closely related to those used in

chemical reaction engineering. The classical approach to establish

crystallization kinetics is to isolate the growth and nucleation processes and

determine their kinetics separately by direct and/or indirect methods under

different hydrodynamic conditions. Several desirable techniques employing

simultaneous estimations of all the kinetic parameters in the rate expressions

formulated for the associated rate processes using experimental responses are

being developed.

5.1 Method of Isolation

5.1.1 Crystal Growth

Direct methods to characterize crystal growth include single crystal studies,

measurement of weight gain or movement of a distribution of seeds suspended

in supersaturated solution. In an indirect method supersaturation depletion is

measured.

5.1.1.1 Single Crystal Studies

A variety of techniques have been reported to carry out single crystal studies

(see for example Table 3 in Tavare1). Although the information derived from

such studies may not necessarily be useful in direct design and analysis of

industrial units they indeed provide valuable semiquantitative guidelines for

narrowly specialized problems. Good agreement between growth rate results

obtained in single crystal and fluidized bed crystallizer studies was observed

under carefully controlled conditions of solution velocity and

supersaturation?0'21 Klug and Pigford22 reported a comparable growth

behaviour of anhydrous sodium sulphate crystals in two types of experiments

viz. single crystal growth studies by photomicroscopic observations in a

flow-cell and growth of an ensemble by the transient CSD measurements in

isothermal batch experiments. In his correspondence Tavare23 pointed out

that the stochastic distribution of growth rate activities determined from a
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large number of single isolated crystals may not necessarily be applicable to an

ensemble of growing and nucleating crystals as in the isothermal batch

experiments. The consistent definition of an average growth rate for an

ensemble of crystals with changing population with time is the time rate of

change of total crystal length per crystal and not the time rate of average

length of a crystal. Work concerning contact nucleation provides strong

experimental evidence of mechanism and also occurrence of growth rate

dispersion. The recent spectacular advances in microelectronics have been

made possible in part because of the ability to grow single crystals of precisely

controlled composition and structural perfection. Crystal size, shape or habit,

purity, perfection, strength and abrasion resistance are the parameters that

frequently determine the suitability of particular crystal for specific

applications and some of them may perhaps be studied on single isolated

crystals. Single crystal studies are also important in gaining a better

understanding of all synthetic materials especially oxidic ceramics and

fundamental information concerning the structural aspects at atomic level and

special behaviour of materials by different techniques. For example the

critical current density performance of a superconducting material in a single

homogeneous form would be significantly enhanced. Inclusion of grain

boundaries in a material may cause the critical density to drop drastically?4

Emphasis in certain applications may change in coming years from

multi—particulate CSD studies to single crystal studies.

5.1.1.2 Model Batch Crystallizers

Although a number of techniques have been proposed for growth rate

measurements, batch agitated vessel and fluidized bed experiments are being

emphasized. For solutions that will sustain moderate to high level of

supersaturation useful design insights can be provided by relatively simple

laboratory growth experiments. Frequently two different modes of

experiments under conditions of negligible mass deposition in nucleation have

been used. In a differential mode a small quantity (~0.5 kg/m3) of closely

sized and weighed crystals is allowed to grow for a predecided period. In this

type of operation solution concentration changes are small so the crystals grow
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at essentially constant supersaturation but at the same time measurable solid

deposition is achieved (~1.0 kg/m3). Direct measurement of the crystal weight

changes enables the overall growth rate to be determined as

R - AW
R - A T A t

at a particular temperature, crystal size and supersaturation level. Results of

growth rates from several experiments may be correlated in terms of the

operating variables.

In the integral mode, on the other hand, a relatively large seed loading (~ 5-10

kg/m3) of closely sized crystals is charged to the crystallizer. The growth

process consumes appreciable solute, thus resulting in decay in supersaturation

during the course of an experiment. If the experimental results of

supersaturation are empirically fitted into a fourth order polynomial in time as

Ac = a0 + axt + a2t2 + a3t3 + a4t4 (28)

the desupersaturation rate at a point then is

ai + 2a2t + 3a3t2 + 4a4t3 (29)

When a model crystallizer is operated isothermally with a negligible mass

deposition in nucleation and no generation of supersaturation the

supersaturation balance (equation 7) at any time in a batch operation is given

by

n _ 1 dAc
R

Using equations (8-12, 28—30) values of growth rate, supersaturation, average

size and slurry voidage at any particular time may be obtained. Results from

several runs may be correlated in terms of operating state variables such as

supersaturation, temperature, crystal size and hydrodynamic situation.
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5.1.1.3 Method of Initial Derivatives

Garside et al25 suggested an elegant technique to evaluate crystal growth

kinetics from an integral mode batch experiment. They used a second order

polynomial (in time) fitting of an initial portion of a desupersaturation curve

obtained in an integral experiment to determine the first two derivatives at

zero time. The kinetic parameters in a power law crystal growth rate in terms

of mass deposition can be related as

2FAc0 AcoAco_2Fa

3, c A T 0 L 2 l l 0 ( Q )

=--Ml r (32)
A

Thus the evaluation of zero time derivatives of a single desupersaturation

curve enables the growth kinetic parameters to be obtained directly.

Tavare26 extended the foregoing analysis to a batch cooling crystallizer and

showed that the initial derivatives of the supersaturation and temperature

profiles obtained in a series of integral batch experiments can be used to

evaluate directly the kinetic parameters(g, E and a) in a crystal growth

relation. Although both the techniques are sensitive to experimental errors in

the measurements of the initial portions of experimental responses, the results

reported14'25'26 show that the method appears reasonably reliable and the

accuracy of the resulting kinetic responses is probably comparable to that

obtained using more involved conventional techniques. These techniques

certainly increase the experimental ease and flexibility with which the growth

kinetics can be determined for many crystallization systems.

5.1.1.4 Growth Rates From CSD

Misra and White27 have reported a technique in the case of alumina

precipitation, following the work of Lyapunov and Kholmogoatseva28, to
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determine the overall linear growth rates from a pair of cumulative number

oversize distributions at two times, interval At apart for a batch configuration

having constant number of total particles and pure convective growth. The

growth rate at size L may be defined from the population balance equation

(equation 16) for constant solvent capacity system and using the definitions of

cumulative number and population density distribution as

r _ A N AL, _ A L

5.1.2 Nucleation

Nucleation is the least understood of the two rate processes involved in

crystallization, the most difficult to describe by well founded kinetic

expressions and the hardest to characterize reliably in a practical situation.

Mullin et al?9 attempted to characterize nucleation rates of potash alum and

potassium sulphate in a fluidized bed crystallizer from the difference in

solution concentration before and after dissolving nuclei and define the regions

of heavy nucleation. This method is very sensitive to solution concentration

measurements and unlikely to lead to precise parameter estimates for the

nucleation process.

Nyvlt30 reported a rapid, simple and indirect method to determine the

nucleation kinetics in a simple power law nucleation rate expression in

supersaturation by measuring the maximum allowable undercooling at a

constant cooling rate i.e. the measurement of metastable zone width. In his

original treatment the rate of supersaturation generation was assumed equal to

that deposited by nucleation process and the slope of the line obtained by

plotting the detected undercooling against the cooling rate has been

interpreted as the order of nucleation process (i.e. the exponent of

supersaturation in power law expression). Several refinements and

experimental measurements for a large number of inorganic salts from their

aqueous solutions with and without seeds have been reported (see for example

Table 3 of Tavare1). This method assigns most weight to one characteristic

point which is itself very sensitive to the method of detection. Further this
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point will generally lie outside the normal working range of supersaturation in

a real crystallizer. Hence even though the method is rapid it might lead to

unrealistic values of kinetic parameters (see also Janse and de Jong31, Hiquily

and Laguerie32).

Misra and White27 employed the time variations of total number of crystals

and concentration to characterize the nucleation kinetics in a batch operated

stirred crystallizer for alumina precipitation from caustic aluminate solution.

They also incorporated a procedure to evaluate total number of particles down

to zero size and used the definition of nucleation rate as

( 3 4 )

where AN is the change in specific cumulative number oversize distribution at

L = 0 in a time interval At. Such an algorithm may however be difficult to

use in many other systems in part perhaps due to unreliability of particle size

analysis techniques towards the lower size range.

A method of isolating secondary nuclei by removing them from suspension and

allowing them only to grow with subsequent characterization by some

techniques has been reported in the literature (see e.g. Toyokura et al33"34).

5.2 Simultaneous Estimation

The so-called continuous MSMPR (mixed suspension mixed product removal)

crystallizer technique with its simple exponentially decaying steady state CSD

n = n»exp(-L/Gr) (35)

has proved the most popular means of quantitatively measuring both the

growth and apparent nucleation rate simultaneously. The usual population

density plot (In n versus L plot) should give a straight line for equation (35)

with slope = — 1/Gr and intercept = n°. The product of growth rate (G) and

nuclei population density (n°) is the apparent or effective nucleation rate (B).
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Analysis of experimental results for the steady state case is simple and the

technique has been used by many investigators?5 Such experiments however

have a number of disadvantages. They are time consuming and laborious and

often require an elaborate experimental arrangement. A large number of

experiments are necessary to elucidate the kinetic expressions as a function of

state variables even with minimum number of parameters. It can be difficult

to operate a continuous crystallizer under MSMPR constraints because of the

problems associated with handling supersaturated solutions and suspensions,

especially when toxic and viscous materials are involved. A possibility of

segregation does exist in continuous units leading to misleading kinetic

information. Further, as the solution holdup requirements is relatively larger,

such a technique may not be suitable for expensive fine chemicals.

Some attempts have been made to derive the crystallization kinetics from

transients of CSDs from an MSMPR crystallizer!2'36"43 The methods using

transient population density information in an MSMPR crystallizer by

themselves appear useful only to provide an independent check on the

reliability of the kinetic parameter estimates.

Batch crystallizers may have definite advantages over continuous systems for

the determination of kinetics in the laboratory. Motivation for their use is

provided by the relative ease with which a large number of operational

variables can be studied within a relatively short time. Systems which are

difficult to process continuously may conveniently be investigated in a

batchwise manner with minimum development time and investment. However

the use of batch crystallizers is complicated by the variation with time of both

crystal population and supersaturation within the system during the course of

experiments. Consequently experimental ease may be partly offset by

computational complexity. Again depending upon the type of information

made available in a batch experiment, different techniques for simultaneous

estimation of crystallization kinetics can be employed.

5.2.1 Solution-side Information
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5.2.1.1 Thermal Response

Omran and King44 used the thermal response, caused by the release of latent

heat of crystallization, to establish the crystallization kinetics of ice crystals

from sugar solutions and fruit juices by seeding with a single ice crystal. Kane

et al45 also demonstrated the use of thermal response in an intermediate step

of freeze desalination to determine the crystallization kinetics of ice crystals

from saline, emphasizing a later portion of the response curve. Stocking and

King46 improved the experimental technique using quartz thermometry so as

to achieve the high resolution measurement of initial thermal response. Shirai

et al4 7 measured both the thermal response with a highly sensitive thermistor

and the crystal size distribution with a microscope during batch crystallization

of pure water and of a 5% dextran solution in order to determine the kinetics.

The techniques developed in all these studies are restricted to the

determination of nucleation characteristics usually based on per crystal, in a

dilute crystal suspensions and assign a greater weighting to the characteristic

points; these are rather difficult to estimate precisely. Shi et al48 in their

study of ice crystallization from aqueous solutions in suspension crystallizers

for the development of freeze concentration processes suggested that the

control over both heat and mass transfer rates is important in order to achieve

optimal performance. They followed crystal size distribution and morphology

of ice crystals by image analysis of periodic samples. Kyprianidou-Leodidou

and Botsaris49 investigated a process of freeze concentration from sucrose

solution by the formation of ice layer on the externally cooled walls in order to

minimize the solution entrapment. The formation of the layer was initiated

by secondary nuclei induced by rotating ice seeds, at subcoolings smaller than

the critical subcooling needed for spontaneous nucleation, yielding smaller

entrainement of sugar in ice than that at higher or at the critical subcooling.

5.2.1.2 Solution Concentration

Halfon and Kaliguine50 investigated the crystallization of alumina from caustic

aluminate. solution of the second stage Bayer process in an isothermal batch

crystallizer by following the concentration variation with time. Kinetic
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constants in rate equations were estimated for known kinetic orders with

respect to supersaturation from experimental results and attempts were made

to discriminate between various mechanistic models using a statistical

approach. Verigin et al?1 recovered the crystallization kinetics of potassium

dichromate from the experimental concentration profile obtained from a

linearly controlled batch cooling crystallizer. Although the technique

employed was not described in detail and may be of dubious soundness, high

order nucleation (~7) and linear growth kinetics were reported.

5.2.1.3 Non-linear Parameter Estimation

Garside and Tavare18 examined the possibility of a technique to deduce both

growth and nucleation kinetics simultaneously from simulated

desupersaturation curves representing the behaviour of seeded isothermal

batch crystallizers charged with an initially supersaturated solution and

described by equations (7-14) in the section on solution-side process

representation. The supersaturation equation is in general a non-linear first

order differential equation and its solution represents the variation of

supersaturation within the crystallizer with respect to time. This variation,

which can be determined from experimental measurements, is a function of

time and the kinetic parameters. Determination of the parameters by

matching the solution of the non—linear model directly to experimental data

results in a non-linear parameter estimation problem. This may be treated as

an optimization problem in parameter space in which the dependent variable

(Ac) and independent variable (t) have fixed values and the kinetic

parameters are variables.

Non-linear parameter estimation procedures implemented by two iterative

algorithms (viz. those of Marquardt and Powell) were used. Several

optimization techniques are though now available. If Y represents a random

observable dependent variable (the response); x a set of several non-random

independent (controllable) variables; 0 a set of parameters in the model and 7]

an expected value of Y at x for given 0, then the regression can be represented

as

(36)
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128 TAVARE

The function to be minimized for the non-linear least squares problem, i.e. the

sum of the residual squares over all the observations may be expressed as

(37)

where m represents the total number of observations made and must always be

greater than the number of parameters.

All the algorithms for non-linear parameter estimation generate an iterative

sequence (/rk') that converges to the true solution b in the limit. To

terminate the computation of this sequence a convergence test is performed to

determine whether the current estimate of the solution is an adequate

approximation. The recursion relation in the sequence is

^k+i) = ^k) + a(k) p(k) ( 3 8 )

where p^k' is termed the direction of search and crk' is the step length. The

step length crk' is chosen so that

. (39)

and may be computed by any one of various methods available. Most

algorithms use one of the two approaches. The objective function can be

expanded as a Taylor series and the improvements or corrections to the

several parameters can be calculated at each iteration on the assumption of

local linearity. Alternatively various modifications of the method of steepest

descent may be used. Both these approaches not infrequently fail, the Taylor

series method because of divergence of successive iterates, the steepest-descent

(or gradient) methods because of the very slow convergence after the first few

iterations.

Marquardt52 observed that in practice for elongated ridges these two

approaches suggest the direction of search nearly orthogonal to each other and

suggested a compromise approach. In his method, at any point /? and given
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Marquardt parameter A, the correction or improvement vector S is obtained

by solving the relation

(JTJ + AD) 6=-fe (40)

where J is the Jacobian matrix of function t and D is a diagonal scaling matrix

with non-zero elements. If the sum of squares F(/7 + 6) is less than F(/?), then

(P + 5} is accepted as the starting point for the next iteration; otherwise A is

increased and the process is repeated. It is interesting to note that equation

(40) encompasses both the previous approaches as the limiting cases. When A

= 0 this method reduces to the first approach of expanding the objective

function as a Taylor series while A —» oo corresponds to the gradient method.

Choices of the initial values for A, factors by which A should be changed and

decisions on when to change can be made in order to improve the efficiency of

the method. Thus by choosing an optimal value of A at each iteration good

progress towards the convergence can be maintained. The selection of A is

based on solution of the normal equations and evaluation of F(/? + 6).

Marquardt algorithm can be used to match the accumulation term (—Ac)

obtained from from the experimental results with that calculated from the

right hand side of equation (7) with the current values of the parameters in an

iteration and requires the values of the partial derivatives of residuals (tj)

with respect to parameters (/?j) at any time.

A typical iteration of the other hybrid method due to Powell53 starts with the

best possible point known so far /?, a step length bound BB, Marquardt

parameter A, and approximation to J and the generalized inverse [J /•/Xl] of
rp

the matrix [J /VXI]. These approximations are used to estimate the steps to

the minima along the Marquardt and the steepest descent direction. The

actual step taken 6, is a linear combination of these estimates chosen so that 8

< BB. The residuals are evaluated at (/? + S ) and the size of BB is then

adjusted according to how successful S was in reducing the sum of squares
T "1

F(/7). The approximation to J and [J /\/A~I] are updated so as to be

consistent with the changes produced in residuals t by the step 6. The

Marquardt parameter A is initially set to a small value and most iterations
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avoid changing it as this would mean the calculation of a new generalized
inverse. If however the several iterations as per equation (40) give excessive
steps, A should be increased. The classic features of this algorithm are that it
combines both approaches in such a way as to give steady progress and a fast
rate of the ultimate convergence but does not require the partial derivatives of
the residuals with respect to the parameters. This algorithm is used to match
the experimental supersaturation values to the corresponding values obtained
from the solution of the supersaturation balance equation (equation 7).

5.2.1.3.1 Exact Responses

5.2.1.3.1.1 Desupersaturation rate curve

The responses as calculated desupersaturation and desupersaturation rate

curves in Figures 2 and 3 were used to provide the data points simulating the

results of experimental measurements. Thirty data points were taken from the

these curves, the time interval between these points being initially 30s,

increasing to 510s at the end of the 5400s batch time. The Marquardt

algorithm was used to match desupersaturation rates evaluated from the

supersaturation balance (equation 7) with the known kinetic parameters (the

model response) with the experimental response represented by the exact data

point obtained.

As mentioned before the Marquardt algorithm requires partial derivatives of

the residuals in the objective function with respect to the parameters in order

to evaluate the Jacobian matrix, J. These partial derivatives of the residuals

with respect to the parameters at any time can be evaluated analytically with

the help of the regression equation (equation 36) and the supersaturation

balance equation (equation 7). Scaling often has a significant influence on the

performance of optimization techniques. The residuals in the objective

function (equation 37) were therefore multiplied by 105, a specific scale factor

used for multiplying both sides of equation (7), so that the desupersaturation

rates would have values around unity. The properties of the gradient methods

are not scale invariant. Use of some standard recommended procedure in S
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space helps in reducing the elongation of the objective function. In the present

work this was achieved by setting the elements of the D matrix in equation

(40) automatically to the corresponding diagonal elements of the J J matrix

at the initial points. Should however the diagonal elements be zero the

corresponding elements of D was set equal to unity.

Physical constraints on the parameters can be incorporated into the

Marquardt algorithm. The rate constants were constrained to have non—zero

positive values while the kinetic orders were subject to lower and upper bound

of 0 and 15 respectively. If the value of a parameter violated the imposed

constraint, the residuals were not calculated but the iteration was repeated

with the larger value of the Marquardt parameter A causing a smaller

improvement in the parameters. Such changes in A should be confined to

early iteration only indicating successful avoidance of the constraints. If

however the changes persist throughout the computation the routine may

converge to a minimum on, or very near, a constraint.

An iterative Nag Library subroutine was used to implement the Marquardt

algorithm. In each iteration the desupersaturation rate was evaluated from

the supersaturation balance (equation 7) which was integrated numerically

with the improved values of the parameters evaluated in the previous iteration

so as to obtain the values of Ac. This gave the model response which was then

compared with that taken from the measured desupersaturation curve (the

experimental response). The convergence test used was that the improvement

vector should be equal to or less than the specified limits. The limits used on

the rate constants and the kinetic orders were lxlO"7 and lxlO'5 respectively

and were much lower than those acceptable in practice. These gradients

should be sufficiently zero at the convergence point. It is also necessary to

show that the convergence is achieved at one unique point, probably the global

minimum for wide range of initial parameter estimates. The parameters

corresponding to this point are in general very close to actual values. In the

present case it was a true convergence. Values of the multiple of the gradient

of the sum of error squares function (i.e. the elements of the J e matrix) also

provides independent information regarding convergence. These values were <

lxlO"15 which are sufficiently close to zero as compared to the residuals (~

10*9) at the point of convergence as indicated by the solid curve in Figure 3.
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132 TAVARE

5.2.1.3.1.2 Desupersaturation curve

The hybrid algorithm due to Powell was used to match the supersaturation

values (the model response) evaluated from the supersaturation balance

(equation 7) with the exact supersaturation values (the experimental response)

represented by data points (Figure 2) at the same time intervals as used for

the desupersaturation rate curve. An estimate of the Euclidean distance

(STEPMX) between the expected minimum and the starting point of the /? on

which steplength bound BB was based was assigned to be unity and should

preferably have higher value (~ 103—104) in some cases for better resolution.

Analytical functional forms of the partial derivatives of residuals with respect

to the parameters were not required in the Powell algorithm. A suitable step

length (h) for making the difference estimates of the partial derivatives needed

to be specified. The step length had to be small enough for the difference

estimates to be close to the time derivatives but not so small that the

calculated differences were dominated by the rounding errors. The particular

value specified in this work was equal to the square of the machine accuracy.

The algorithm used STEPMX to control the length of the steps and h to

calculate the differences* For both these processes it was important that the

parameters (ft) should be scaled (by multiplying them by appropriate

constants) so that their magnitudes were similar. In the present case

nucleation rate coefficient kb was scaled in such a way that would have a

numerical value of around 5. The iterative hybrid Powell algorithm was

implemented via a library subroutine to this problem. In each iteration the

supersaturation balance (equation 7) was integrated numerically using the

improved values of the parameters estimated in the previous iteration. The

numerical integration was performed using the fourth order Runge Kutta

subroutine with a step length of 30s to evaluate the model response. It was

then compared with the experimental response. The convergence test used

was that the difference in the values of the sum of error squares functions in

two successive iterations should be equal to or less than a specified quantity.

The choice of this convergence test was important because it was also used as

a lower bound for the Marquardt parameter. The accuracy on the difference is

limited by that of the machine and the order of the magnitude of sum of error
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squares function should be considered. The results indicated that the

convergence was achieved at a point very close to actual values of the

parameters, even when widely different initial estimates were used. It was

always necessary to ensure that the algorithm achieved a global minimum at

or very close to the actual parameter values.

The computational time required for these routines in general depends on the

number of parameters, the number and behaviour of functions, the distance of

the solution from the starting point and the accuracy of the solution

demanded. The number of operations performed in most iterations of the

Marquardt algorithm is roughly proportional to the cube of the number of the

parameters to be determined. In addition to this, each iteration should

evaluate c at 0, J J and J e. Should these evaluations be lengthy the run

time will probably be dominated by these computations. The CPU time used

by the Marquardt algorithm for a run of about 100 iterations in this problem

was around 40s on CDC 7600 machines.

The number of operations carried out in one iteration of the Powell algorithm

is roughly proportional to the product of number of observations and the

square of the'number of parameters to be estimated. In each iteration of this

routine e of 0 needs to be evaluated and the run time will probably be

dominated by the time spent in evaluating e. The CPU time required by this

routine for a run of about 100 iterations ranges from 150 to 200 s on CDC 7600

machines. The higher CPU time per iteration is probably attributable to the

fact that the Powell algorithm uses the difference estimates of the partial

derivatives of the residuals with respect to parameters by the forward

difference method. The compilation time used by both these routines is

however the same (~ 6—7s).

Starting from the same initial point and demanding more or less similar levels

of accuracies for typical runs of this problem indicated that although the

number of iterations are roughly the same, the CPU time taken by the Powell

algorithm is higher than that used by the Marquardt algorithm. These

algorithms were found to be robust for the present applications as in most

cases with widely different initial guesses true convergence was achieved.
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134 TAVARE

The parameter estimate results obtained in the present synthetic problem do

not provide any information about their reliability and precision. The

covarience matrix of the probability distribution which is generally assumed to

be normal for a sufficiently large number of observations is a measure of the

reliability of the estimates. The diagonal elements of this matrix are the

variance and hence their square roots are the standard deviations of the

parameter estimates. A measure of the precision of the estimates is usually

expressed by confidence limits which are simply the product of a fixed number

(depending upon the percentage level) and the standard deviation (see Figures

1 and 2 for typical results). These results in general reveal that the kinetic

orders can be estimated with greater precision than the rate constants. For

certain cases the Marquardt algorithm provided poor reliability, yielding large

values for the 95% confidence limits for rate constants and the final sum of

error squares of the residuals. The Powell algorithm seems to provide

reasonable precision and reliability in this application. A necessary and

sufficient condition for the parameter observability is that the Hessian matrix

(J J) must be nonsigular, i.e. the elements of the matrix of second partial

derivatives of the residuals with respect to parameters, 'Aa'Sfft., must be

positive semidefinite at the minimum of the residuals and is usually satisfied.

The success of the Marquardt algorithm depends on the availability of reliable

estimates of desupersaturation rates. It would be advantageous if an

experimental technique could be devised to provide directly the

desupersaturation rates as an experimental response in addition to

supersaturation values. Deduction of desupersaturation rate data from an

empirical fitting of the experimental supersaturation-time data

(desupersaturation curve) were found not to be reliable or satisfactory.

Although the Marquardt algorithm is efficient the problems associated with

measurements may limit its utility in kinetic parameter estimation of this

kind.

The quasilinearization algorithm is the other technique among the most

common methods that are used in off—line parameter estimation in systems

described by sets of ordinary differential equations and are very important in

process modelling, simulation and optimization?4'55 The algorithm is best
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ANALYSIS OF BATCH CRYSTALLIZERS 135

known for its fast quadratic convergence to the optimum, but a major problem

is its small region of convergence?6'57 Although several other approaches have

been suggested to overcome the small region of convergence58*64 it appears

difficult to get satisfactory results with either solution-side or solid-side

description because of very small region of convergence in a parameter space.

5.2.1.3.2 Noisy and Experimental Responses

5.2.1.3.2.1 Dcsupersaturation curve

The Powell algorithm appears superior to that of Marquardt for reliability and

accuracy of the parameter estimates from the exact data point. Error was

introduced into the concentration values at these points using a random

number generator, different distributions of error being obtained by using

different statistical distributions. The standard deviation of these points

about the exact values was varied. These data points were used to represent

the results of the experimentally measured desupersaturation curves. The

Powell algorithm was used to estimate the kinetic parameters. The results

indicated the kinetic orders can be estimated rather more easily than the rate

coefficients. The best estimates of all four parameters were close to the true

values for concentration standard deviations up to about 10'5 kg/kg solvent,

the estimates of the 95% confidence limits of the rate coefficients were large at

this point. On the other hand at the same level of concentration standard

deviation the estimates of the orders were reasonably reliable. Experimental

determinations of solution concentration imply that the crystallization kinetic

orders can probably be estimated using the technique but that estimates of

rate coefficients may be unreliable. Application to experimental isothermal

desupersaturation curves for potash alum from a 30 L seeded batch crystallizer

gave consistent estimates of the kinetic parameters. High order nucleation

kinetics probably reflect the high levels of supersaturation used during the

experiments!8

Palwe et al!4 determined the best estimates of kinetic parameters in equation

(7) from the experimental curves using a comprehensive algorithm for the
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non-linear least squares problem available as a computer library subroutine

(subroutine LSQNDN in NPLA or NAG library). This subroutine has better

computational features than, and was included as a replacement for, the

Powell algorithm. The routine works for functions having continuous first and

second derivatives which are normally evaluated numerically and yields better

results even with occasional discontinuities in the derivatives. The step length

<rk' as given in sequence of points (equation 38) is usually chosen such that

F(/rk '+ crk') is approximately minimum with respect to a?v'. The vector p^k'

representing a direction of search depends on the reduction in the sum of the

residual squares obtained during the last iteration. If the sum of the residual

squares was sufficiently reduced then p^k' is an approximation to the

Guass-Newton direction; otherwise additional function evaluations are made

so as to enable p^k' to be made a more accurate approximation to the Newton

direction. Although the method is designed to ensure that steady progress is
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Figure 8 Growth rate data for ammonium nitrate

achieved whatever the starting point and to have a rapid ultimate convergence

of the Newton method it was difficult to achieve true convergence for these

experimental runs even after reasonable relaxation in the convergence test.

The best estimates were selected with the best possible minimum sum of

residual squares through several trials with a fixed number of iterations. A

typical experimental desupersaturation curve for ammonium nitrate and its

optimization and polynomial fitting are shown in Figure 7. The results of

growth rate data as a function of supersaturation for the desupersaturation

response in Figure 7 are reported in Figure 8 for three techniques viz.
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polynomial fitting, initial derivatives and optimization procedures. Also

included in Figure 8 is the general growth rate correlation at T = 305 K, c =

0.997, L = 700 /iin, N = 10 rev/s deduced from the results of ten experiments.

In general the agreement among the three calculation methods are depicted by

the representative of the results in Figure 8, is best at high values of

supersaturation which corresponds to the initial part of the experiment. The

method using the optimization procedure used for the non-linear parameter

estimation makes use of all the experimental data points and determines

simultaneously growth and nucleation kinetics as in equation (7) for a run.

The technique based on initial derivatives utilizes only the initial part of the

desupersaturation curve. The growth rate data obtained from the polynomial

fit show a reverse trend after some initial period in all the runs because of the

change in direction of the supersaturation rate. The techniques of empirical

polynomial fitting have been conventionally used in the past but may not

necessarily yield consistent growth rate data over the entire range of

supersaturation, particularly at low supersaturation level. The method using

initial derivatives is the simplest of all and appears sensitive to measurement

of the initial supersaturation decay. Although the parameter estimates in

kinetic relations were not entirely consistent among the different techniques

the kinetic responses calculated from these correlations were comparable over

the experimental range. The methods using the optimization procedures are

the most accurate and precise they demand inordinate computation time and

complexity when an iterative algorithm has to be adopted.

Qiu and Rasmuson65'66 used a non—linear parameter estimation procedure to

extract growth and dissolution characteristics of succinic acid crystals in a

batch agitated vessel from the measured desupersaturation. They minimized

the sum of error squares of supersaturation residuals defined as the difference

between the calculated and measured values. They used the time variation of

supersaturation incorporating the growth rate correlation in the integrated

definition of the growth rate valid for an ensemble with constant population to

calculate the value of supersaturation at any time. In addition to

desupersaturation information for non-linear parameter estimation by

optimization techniques from a seeded batch crystallizer Witkowski et al?7

suggested that obscuration, a light scattering measurement by a Malvern
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particle size analyzer, provides a measure of the second moment of the crystal

size distribution and can be used along with the solution concentration data in

identification of all the kinetic parameters. Rawlings et al?8 reviewed model

identification and control techniques for solution crystallization processes.

Measurement technology for on—line crystal size distribution (CSD) and

numerical methods in light of parameter estimation procedures were assessed.

5.2.2 Solid-side Information

The use of batch crystallizers for the simultaneous estimation of growth and

nucleation parameters appears to have been first reported by Bransom and

Dunning?9 They suggested an elegant experimental technique to determine

the kinetics of cyclonite precipitation in a batch agitated vessel in a

differential mode at different initial supersaturation levels. Misra and White27

employed the time varying particle size distribution and concentration

variation in a non-uniformly seeded isothermal alumina crystallizer and

determined the growth rates by following the movement of the size

distribution with time and nucleation rate from the particle count.

Wey and Estrin70 modelled a batch agitated crystallizer for the ice-brine

system to determine the crystallization kinetics using the population balance

equation coupled with mass and energy balance equations. A general size

dependent growth model based on diffusion controlled growth mechanisms and

a simple power law for the nucleation rate involving the supersaturation and

total surface area were included. In their later work Estrin et all1 used an

orthogonal polynomial of third degree with an exponentially decaying

weighting function to simulate the population density function in a batch

agitated crystallizer. They thought the hump or the plateau in the

conventional population density plot may be due to competition for the

dissolved solute between the growth and nucleation processes and used this

characteristic in revealing these kinetic parameters. Lee72 suggested a

technique of characterizing both nucleation and growth from the population

density response of a stirred batch crystallizer seeded by a single crystal. Wey

and Terwilliger73 in their correspondence have however pointed out the basic
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inadequacy in Lee's approach72 as he assumed constant values of both time

varying overall linear growth rate and birth function in a non—programmed

batch operation.

Harano and Yamamoto74"75 attempted to investigate the impurity effects on

crystallization kinetics by characterizing both growth and nucleation kinetics

for L—glutamic acid crystals by following the transients of light transmittance

and electrical conductivity of solution and by CSD analysis of product

crystals.

Gutwald and Mersmann76 measured crystallization kinetics of potash alum in

a controlled cooling batch crystallizer maintained at a constant level of

supersaturation by using a programmed temperature profile. The variation of

solute and magma concentrations were monitored. The change of crystal

number with time gives the nucleation rate. They showed that the kinetic

results from batch experiments were in good agreement with those obtained in

several MSMPR crystallizer studies. Molner et al!7 illustrated a calculation

method to extract size dependent growth kinetics of potash alum crystals from

a batch cooling crystallizer using the population balance approach.

The population balance equation (e.g. equation 16) is in general a non-linear

first order partial differential equation (PDE). Two factors tend to complicate

the PDE parameter estimation problem as compared with that for ordinary

differential equations (ODEs). First parameters may enter into the boundary

conditions as well as into the equations themselves. Second the measurements

are functions of both space and time. Thus the experimental data can be

either values of state at a certain location or integrated values of the state

over some or all of the special domain of the process.

Seinfeld78 and Seinfeld and Chan79 developed several non-sequential

techniques of the parameter estimation in non-linear PDEs and boundary

conditions from noisy experimental data. Alternatively the partial differential

equation may be transformed into a set of differential equations by moment

transformation and then the problem may be converted into the ODE

parameter estimation problem. A rather special situation arises when the
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differential equations are linear in which case either the analytical solution or

the transfer function can be made available. If the analytical solution is

available the parameter estimation reduces to one involving an algebraic

model. If the transfer function is available optimization in transformed

domain may be used.

Although methods using optimization procedures, as mentioned before, are

potentially the most accurate and precise they demand inordinate computation

time and complexity when iterative techniques have to be adopted. In

addition most iterative algorithms cannot be used as a blackbox for a given

parameter estimation problem. The users must know both the technique and

the problem well to get the satisfactory results. Because of these limitations

Garside and Tavare18 developed several simplified algorithms to extract the

kinetic parameters from population density information.

5.2.2.1 Method of Moments Analysis

The use of moments in system response analysis for parameter estimation in

linear models involves matching moments of the system model output to like

moments of experimental data. The kth moment of the population density

distribution about the origin, obtained by moment transformation with size, is

defined as

lik = fnLkdL (41)

If the moments of the experimental population density function^ are available

at two times differing by a small time interval At over which the linearity of

the model may be assumed, the kinetic parameters can be expressed in terms

of moments with respect to size at an average time as

B = A/io/At (42)

and
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G = A/ii//2oAt (43)

or

G = A/i2/2/iiAt (44)

where A represents the difference in values of a quantity at two different times

and the bar an arithmetic average of the quantities. These three relations are

derived from the moment equations for N crystals (equations 18—21) by

converting the derivatives in the differential equations into differentials. Thus

the average nucleation rate B and average overall linear growth rate G may be

determined from two experimental population density plots obtained during

the course of a batch experiment at times t and t+At. The moments analysis

was carried out using exact numerical solution and simulated responses

according to Coulter counter particle size analyzer with and without

superimposed noise!9 Their simulation studies showed that the results of

parameter estimates are not very sensitive to the experimental noise and

numerical integration technique employed in evaluations of moments.

Generally parameter estimates based on the higher order moments show larger

scatter than those based on the lower order moments. A large scatter of all

these estimates compared to actual values was identified with the error

associated with tail effects.

5.2.2.2 Method of s plane Analysis

It is often advantageous to estimate model parameters in the Laplace

transform domain rather than the time domain. Experimentally determined

population density can be converted into the Laplace transformed response

with respect to size as

n(t,s) = Jn(t,L)exp(-sL)dL (45)

The Laplace transformation of the population balance equation (equation 16)

with respect to size yields

dj jks l + G [sf i ( t l s ) -n( t ,O)]=O (46)
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Although G and n(t,0) are functions of t they can be assumed constant over a

small time interval At and the parameters will then have an average value

over this interval. Using zero initial condition with regard to the initial size

distribution for N crystals, equation (46) reduces to

df i<^s) + Gsn(t,s) - B = 0 (47)

Transforming the derivative in equation (47) into differentials gives

j ^ - = - G s n ( t , s ) + 6 (48)

where An(t,s) is the difference between the Laplace transformed population

densities at time t and t+At and n ( t , s ) the average of these quantities.

In the method of s plane analysis a plot of time rate of change of the Laplace

transformed population density against the product of the Laplace transform

variable and average Laplace transformed population density over an optimal

range of Laplace transform variable will yield a straight line with slope = —G

and intercept = B. Thus equation (48) can be used to determine the kinetic

rates from a pair of population density curves at two times At apart.

One of the obvious advantages of using the Laplace domain is that the

sensitivity to experimental errors in the determination of the experimental

response is greatly reduced provided that a suitable value of the Laplace

transform variable s is used. Clearly, if the value chosen for s is too small

then the tail of the response will be heavily weighted whereas if it is too high

then too much emphasis will be given to the front portion of the response. In

either case a poor estimate of the weighted moments will result. Between

these two limits there will be an optimum value of s which reduces the errors

due to uncertainties at either end of the response and yet gives weighted

moments containing useful information about the system. In general the

optimum values of s depends on the mean of the responses, the order of the

moments involved in the parameter estimation and the noise sensitivity along

the response. Selection of the optimum Laplace transform parameter in the

analysis of the crystal growth dispersion in a batch crystallizer has been

reported!8
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In formulating the linear regression to estimate B and G from equation (48)

the limits on the optimal values of s must be known a priori. Simulation

studies18 indicate that the limits on the values of s should be constrained by

SfL2 ~ 1—2 where L2 is the population average size at time t2. The level of

error introduced on the simulated response has little effect on the kinetic

parameter estimates determined. The method of s plane analysis thus appears

to eliminate many of the limitations associated with the method of moments

and provides a simple, reasonably accurate and seemingly reliable technique

by which to extract parameter estimates from the experimental observations.

5.2.2.3 Method of Frequency Analysis

Frequency response testing is another classic technique used for parameter

estimation and design in linear control systems. The frequency response

transfer function of a stable linear one dimensional system to any forcing

function is simply the Fourier transform with respect to size of the time

domain response (or the Laplace transform with s = ]u in equation 45). Thus

n(t,jw) = f°°n(t,L)exp(-jwL)dL (49)

or a complex sum of Fourier Sine or Cosine transforms

n(t,jw) = ^°°n(t,L)cos(wL)dL - j£°°n(t,L)sin(wL)dL = U - j3

(50)

Transformation of the population balance equation (equation 16) by taking the

Fourier transform with respect to size, writing the resulting transforms and

separating real and imaginary parts we get the following equations

££• = -GwS" + B (51)

and

? (52)
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Over the optimum range of transform parameter w, a plot of AC/At versus

wS in equation (51) should yield a straight line with gradient = —G and

intercept = B whereas a straight plot of AS/At against wC in equation (52)

should pass through the origin and have slope = G. Thus equations (51—52)

can be used to determine the kinetic parameters if the Fourier Sine and Cosine

transforms of the two experimental population density curves separated by At

apart are available.

5.2.2.4 Methods Based On Empirical Fittings

An experimentally observed response can be fitted to a suitable functional

form which then can be used either to extract kinetic parameters or to relate

the kinetics parameters in terms of empirical constants. In this section two

semi-empirical approaches used in the past will be assessed critically for

possible use in the simultaneous estimation of crystallization kinetics

parameters.

An approach of using empirical fitting of observed population density response

as presented by Sowul and Epstein41 for sugar crystallization in an MSMPR

crystallizer may be considered for a batch crystallizer. The population density

function may analogously be represented for a batch crystallizer as

n(t,L) = c'exp(-a'L)exp(-b'r/t) (53)

where a', b1 and c1 are empirical constants and r is the run time. From the

population balance equation (equation 16) and equation (53) the growth rate

may be expressed as a function of time by

n _ dn I dn _ b 'r
G

While putting L = 0 in equation (53) the nuclei population density is given by

nO = n(O,t) = c'exp(-b'r/t) (55)
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Thus a1, b1 and c1 can be determined by fitting the observed population

density data at any time, t the kinetic rates (G, n° and hence B) can be

simultaneously determined. In this approach the functional form of equation

(53) is assumed to be an analytical solution to the population balance equation

(equation 16).

Hulburt and Katz80 presented an elegant method using orthogonal expansion

of the original associated Laguerre polynomials based on a gamma distribution

to recover an approximate distribution function from a set of leading

moments. Instead of a gamma distribution an exponential function (which is

a special case of gamma distribution) may be used for the batch crystallizer.

Randolph and Larson16 have however pointed out that the addition of higher

order corrections involving the Laguerre polynomial terms exacerbates the

degree of fit by producing increased numerical oscillations thus making the

method of no practical value. The use of lower order terms only may yield

reasonable results in some cases. Estrin et all1 used third degree orthogonal

polynomials using identical series expansion for fitting the population density

response obtained from a batch ice crystallizer. The use of methods based on

empirical fittings of the experimental response may be valuable in a specific

applications but their generality may be highly questionable.

Previously reported results of population density as a function of size at

various times from the two types of experiments were used to check the

potentialities of first two of the techniques. The first type of experiment

consisted of measuring the desupersaturation curve and population density as

a function of size at various time intervals from a 4 L seeded isothermal batch

crystallizer charged with initially supersaturated solution for alumina

crystallization. The size distribution measurements were made with a Coulter

Counter and population density plots were reported in Figure 5 and 10 of the

original paper by Misra and White?7 The experimental results were originally

used to characterize the growth and nucleation kinetics simultaneously by

using numerical differentials. The results of reanalysis of two sets of the

original data (Figures 5 and 10; Misra and White27) by two methods viz.

moments and s plane analysis are reported in Table 5. The values of growth

and nucleation rates are in most cases not only consistent among themselves
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Table 5 Crystallization kinetics of alumina from a batch crystallizer
(Misra and White27)

Fig process time moments analysis s plane analysis

no.

in
ref

27

5

10

variables internal

min

T = 75°C 0 - 160

W o = 10g/L160-340
340-1875

T = 60°C 0 - 270

W 0 =10g/L 270-420

420-1170

Gxl6°
m/s
eq44

10.6

8.1

0.6

3.1

3.7

0.6

Gxl6°
m/s

eq43

17.5

8.2

0.6

3.5

4.6

1.0

B

no/smL

eq42

1.2x10*

Lxlo'
l.xio2

1.7x10*

3.7xl8
2.1x10*

Gxl0°

m/s
<

24.9
8.2

0.6

3.9

5.4

1.3

B

no/smL
-cq48—

1.2x10*

-0.62

-O.002

1.7x10*

3.7x10*

2.1x10*

r

%
\

99

99

100

99

99

99

but also are comparable with those reported in the original paper (G ~
2-10x10-1° m/s and B ~ 0-5x10* no/s mL).

In the second type of experiment a 48 L seeded batch cooling crystallizer was

operated at a predetermined cooling rate using an electronic temperature

control system. Two systems, potassium dichromate and potash alum, were

used for the experiments and the results in the form of population density as a

function of size at various times derived from sieve analysis were reported.

The results obtained using the two parameter estimation procedures and data

from original figures (Figure 7.1, page 89; Figure 7.18, page 106; Janse81) are

presented in Table 6. In most cases the results for both these systems show

consistency among themselves and are reasonably comparable with those

reported previously (potassium dichromate: G ~ 3—lOxlO'8 m/s, B ~ 106— 108

no/s t or no/s 1000 kg (Janse81); potash alum: G ~ l-10xl0~8m/s, 5 ~ 107—108
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Table 6 Crystallization kinetics of potassium dichromate and potash

alum from a batch cooling crystallizer (Janse81)

Run Fig stirrer time moments analysis s plane analysis

no no

in
ref
81

speea interval

rev/min min

s

GxlO8

m/s
eq44

GxlO8

m/s
eq43

BxlO6

no/st

eq42

GxlO8

m/s
<—cq

BxlO6 r

no/st %

48 1

Potassium dichromate-water system

(f = 10°C/h, To = ~40°C, Tf = ~20°C, MT =~.2-115 kg/t, r = 100 min)

7.1 1200

7.1 500

17 7.1 1000

Potash alum-water system

(T = 10°C/h, To = ~38<>C, Tf = 22°C, MT = ~30-125 kg/t, r = -80 min)

0- 8
8-52

52-105

0- 8

8-48

48-103

8-50

50-105

15.3
2.3

1.3

22.0

4.7

1.7

2.6

1.3

19.8
3.1

2.2

32.0

3.5

1.9

3.4

2.0

9.3
4.8
10.9

6.6

0.4

1.2

2.5

3.5

24.9
4.1

3.2

44.5

2.8

2.3

4.4

2.8

9.6
5.0

11.4

6.8

0.4

1.2

2.5

3.7

99
99

99

99

99

99

99

99

3

10

12

7.18

7.18

7.18

500

250

1000

8-30
30-80

10-28

28-82

8-36

38-86

3.1
1.4

3.1

1.2

2.2

1.3

3.1
1.3

2.9

1.3

2.2

1.7

6.8
4.4

8.0

7.7

15.3

27.8

3.1
1.2

2.9

1.5

2.2

2.2

6.8
4.4

8.0

7.9

15.4

28.8

99
99

99

99

99

99
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Figure 9 Population density data from a batch crystallizer

no/m3s (Jancic82)). In assessing these results it is necessary to note the

original data used in the calculations were obtained from experiments that

were not specifically designed to use the parameter estimation procedures.

Garside and Tavare18 have examined critically all these simplified parameter

estimation procedures using simulated experimental observations of the

population density to judge their suitability. The method of s plane analysis

was found satisfactory. A typical pair of population density curves obtained

in an experiment performed with potash alum in a 25 L seeded, isothermal

draft tube baffled agitated crystallizer is shown in Figure 9 and the resulting

linear plot in equation (48) for the method of s plane analysis using the

experimental data is given in Figure 10.
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6 Potath Aim

r—lrrterc*p<.3-15 «X)J no/t kg solvent

At.900t
ti »36OOi
t2«t5OO*

X) m/s

G .0-92.10 m/t
B •3-15«101 no/skg sofcert
r.0-99

Figure 10

1-0 ( 2-0 3 0
s nls.t I «Kf (no/m kg soiv«rrt)

The method of s plane analysis for data in Figure 9

Several studies have been performed using the most suitable technique out of

simplified parameter estimation procedures viz. the method of s plane analysis.

Although the parameters in the kinetic relations resulting from all these

studies were not entirely consistent with those previously reported for the

corresponding systems measured using the other conventional techniques (e.g.

continuous MSMPR crystallizers) the kinetic responses calculated from the

different correlations were comparable over the range of experimental

variables. The comparison-of growth and nucleation rates, for example, in

Figure 11, shows that the correlations by the method of s plane analysis give
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Comparison of growth and nucleation kinetics

similar rates to those of Garside and Jancic83 determined from continuous

MSMPR crystallizer with size distribution measurements down to about 35

fim. There is also consistency between the two nucleation correlations for

batch studies determined as a function of growth rate and supersaturation.

The kinetic responses calculated from the different correlations as reported in

Figures 12 and 13 appear consistent with the range of size distributions used in
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Comparison of relative nucleation kinetics

their determination. Thus the method of s plane analysis appears to provide a

simple, accurate and seemingly reliable technique by which to extract

parameter estimates from experimentally measured CSDs.

5.3 Consistency Checks

In addition to the consistency of the derived kinetic results of a system among

themselves and with previous results in their totality it is in general desirable

to have independent checks that should be satisfied in order to develop

confidence in the estimated parameters. As mentioned before, the kinetic

rates are just concepts and derived for and from the process. In the technique

of parameter estimation by an iterative optimization procedure calculated
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Comparison of relative nucleation kinetics for potassium

sulphate162

desupersaturation curves using the best estimates evaluated from the

optimization routine should closely match the experimental deBupersaturation

curve as can be seen, for example, in Figure 7. Slurry densities determined

from the product crystal usually at the end of a run and solution concentration

changes should be in good agreement indicating adequate closure of the solute

balance. Prediction of growth kinetics should be normally satisfactory and

mostly in good agreement with previous work (see e.g. Figure 7). The

evidence given by the final product size distribution should provide a further

approximate confirmation of the growth kinetic parameter estimates.

Figure 14 depicts normalized differential and cumulative oversize weight

distribution and the corresponding population and weight density plots for the

product crystals obtained for a run, all being derived from the sieve analysis.

The location of the original seed size is also shown together with the expected

final size of product using the growth kinetics in Figure 8 along with the
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Figure 14 Typical product size analysis

experimental desupersaturation curve in Figure 7. This shows good agreement

with that part of the measured product distribution and so confirms the

reliability of growth rate parameters. The wider spread in actual product size

distribution as compared to the narrow seed size distribution most likely arises

from the phenomenon of growth rate dispersion (see sections on growth rate

dispersion). The weight density plot delineates more closely than the
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population density plot the two distinct peaks representing the distributions

due to nuclei and seeds respectively. The effective nucleation rate determined

from the desupersaturation curve is in terms of a mass deposition rate. It is

rather difficult to find a suitable similar independent confirmation regarding

the accuracy and precision of this rate independent of speculations concerning

the mechanism or the character of nucleation process. A considerable

difficulty is posed in transforming this rate to an equivalent rate on a number

basis as classically used in continuous MSMPR experimentation. Kane et alf5

assumed a population density decaying exponentially with size analogous to an

MSMPR distribution at a particular time in a batch crystallizer, such a

functional form could be used to define nuclei population density by matching

suitable known moments of distribution. Estrin et all1 also used an empirical

curve of an orthogonal polynomial of third degree with an exponential

weighting function. Mullin and Nyvlt84 and Nyvlt85 have suggested several

arbitrary ways of defining the nucleus size. Although it has shown that the

kinetic estimates obtained from the desupersaturation curves can be used to

reproduce the original desupersaturation curve in Figure 7 it is difficult to

predict the population density curves with any certainty using these kinetic

estimates.

Garside and Tavare19 demonstrated with the simulated noisy experimental

observations that the original size distributions can be recalculated with fair

degree of confidence. The relative nucleation kinetics obtained from the

method of s plane analysis using the simulated noisy Coulter counter

population density data with the relative standard deviation about the true

value of 20% were used to calculate the desupersaturation curve and the time

evolution of the CSD. The dotted curves in Figures 4 and 5 represent the

results of these calculations. The differences between the two sets of curves

are comparatively small. It appears however difficult to recover the

experimentally measured size distributions from the derived kinetic

parameters. For example Figure 15 shows the final measured size distribution

for a run and illustrates the agreement between data points obtained with the

Coulter Counter and by sieve analysis. The final crystal size distribution was

calculated using the kinetic correlations and experimental desupersaturation

curve; this calculated distribution is also shown. Comparison of these two
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Figure 15 Comparison between measured and calculated size

analysis

distributions illustrate a feature of calculations techniques based on moments.

As an averaging of the distribution is involved it is frequently difficult to

invert the problem and recover the data.

It is important to note that parameter estimation procedures using two

different pieces of information are independent of each other and each only
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uses partial information of the system. Interrelation between them to yield

consistent results is difficult. A further difficulty arises from the lack of our

understanding about the nucleation phenomena. It has however been

demonstrated that the laboratory experiments employing a batch crystallizer

provide valuable information regarding crystallization kinetics and

demonstrate the relative ease with which the effect of several operating

variables on growth and apparent nucleation kinetics can be correlated in a

short time.

6. CHARACTERIZATION OF GROWTH RATE DISPERSION

There has been increasing recognition to the phenomenon of growth rate

dispersion in analysis and characterization of the crystal growth process. The

concept originated from early work on sugar crystallization?6 Since then

several researchers have shown for many crystallization systems that when a

group of crystals all having the same initial size are grown under globally

identical external conditions of supersaturation, temperature and

hydrodynamics in a batch crystallizer under negligible nucleation conditions, a

stochastic variation in crystal growth rates exists and consequently a

broadening in product crystal size distribution results.

Experiments of many different kinds in batch mode have shown the existence

of growth rate dispersion. In their seminal work on sugar crystallization in a

5L batch crystallizer White and Wright86 introduced a phenomenological

length parameter, p, characterized from the slope of the variance of the

product distribution against the mean size of the crystal population. Although

there is a scatter the general trends in their results show that the magnitude of

the length dispersion parameter increases with decreasing growth rate and

level of impurity and is insensitive to temperature and initial seed conditions.

Natalina and Treivus87 studied the growth characteristics on numerous large

(up to 20 mm) potassium dihydrogen phosphate (KDP) crystals in a growth

cell by measuring size increments in two directions and observed substantial

growth rate variations at all levels of supersaturation. Janse and de Jong88

characterized growth rate and growth dispersion characteristics in a fluidized
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bed crystallizer. Gabas and Laguerie89 characterized growth rates and their

dispersion for D-xylose crystals in aqueous solutions in the presence of ethanol

as a co-solvent and of D-mannose as a co-solute from measured crystal size

distribution by a particle size analyzer. Direct observations by photographic

microscopy used by a number of investigators90"94 clearly showed the

secondary nuclei had a variety of growth rates apparently unrelated to crystal

size or environment in a supersaturated solution. The behaviour of secondary

nuclei has been characterized from measurements on both single

crystals90'95"97 and crystal populations90'91'98"104 while growth of small single

crystals produced by primary nucleation processes is described!05"107 All the

studies provide strong experimental evidence that very wide variations have

been found for growth of nuclei produced in the microscopically visible size

range either by contact secondary or primary nucleation processes. The

magnitude of dispersion determined from single crystals appears generally

larger than that characterized from an ensemble of crystal population90'108"109

although the study22 on anhydrous sodium sulphate crystals reported smaller

dispersion for single crystals.

Most of the above studies based on single crystal growth rate measurements

support the view that, although the different crystals have different growth

rates for given environmental conditions, a given crystal grows at a constant

intrinsic rate. Perhaps the constancy of the growth rate for a given crystal

may be attributed and the time scale over which the measurements are made.

Klug and Pigford22 reported single crystal studies for the growth rate of

anhydrous sodium sulphate crystals in a flow cell. Measurements of size

versus time for several single crystals were observed by photomicroscopy to

calculate the growth rates of individual crystals. Using this information they

constructed a normalized distribution of growth rate activities. The linearity

of the size versus time data for several crystals grown at identical conditions of

temperature and supersaturation indicated that the individual crystals

maintained constant but independent growth rate. The results also indicated

the presence of the growth rate dispersion. To account for the temperature

effect the growth rate data at the other temperatures was normalized at 61* C

using the Arrhenius expression with activation energy of 13.7 kcal/mol. From
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the spread of the measurements the growth rate dispersion effect increases
with supersaturation.

The probability distribution of growth rate activities, P(g*), can be

determined from single crystal growth data by recording the frequency (or

number of occurrences) of specific value of g*. The value of g* can be

calculated from the growth rate model as

G = g*^((X,T) (56)

where G is the measured growth rate, g* represents a structure sensitive

variable characterizing a crystal's individual growth rate activity, and <p{a,T)

is the driving force for crystal growth which is considered to be the same for

all the crystals. The model thus assumes that a crystal's growth activity, g*,

is fixed at birth and will not change with size, temperature or supersaturation.

The function 0(a,T) was determined by correlating the measured growth rates

of the single crystals with an expression of the form

<X<x,T) = lxl0»<T2exp(-13700/RgT)tanh(0.1/a) (57)

The resulting growth rate activity distribution of single crystals computed by

plotting the number of occurrence of g* vs g* is shown in Figure 16. The

distribution is normalized such that the area under the curve is equal to unity.

The most notable feature of the distribution is the asymmetry; greater number

of crystals are found in high growth activity region. Garside and Ristic107 also

reported similar observation for the ammonium dihydrogen phosphate system.

The definitions of the statistical properties used in Figure 16 are in Table 7.

In order to characterize the magnitude of the growth dispersion phenomenon

Janse and de Jong110 assumed that the growth rate is an independent property

of a crystal as each crystal grows at its own constant intrinsic growth rate

throughout the life span in an environment and defined a two dimensional

modified population density function characterized by two variables viz.

crystal size and growth rate. Such an approach should add an additional

dimension to the number conservation equation and require an additional
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Figure 16 Distribution of growth rate activities, P(g*), of

anhydrous sodium sulphate crystals as determined from

single crystal growth studies

Total number of crystals measured =209

Range of crystal sizes 20 — 400//m

Results of statistical analysis

Average growth rate activity = <P(g*)>i = 5.5pm

Second moment = <P(g*)>2 = 36.1 (/xm/min)2

Third moment = <P(g*)>3 = 253 (/jm/min)3

Standard deviation = SD = 1.8 (/zm/min)

Coefficient of variation = CV = 32 %

Skewness = K = 1.4

constraint to define the system. Usually the growth rate dispersion in the

form of a statistical distribution (e.g. by gamma distribution) has been

arbitrarily used!10"111 Such modelling may make the characterization of

growth rate dispersion difficult from the response of the system. The growth
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i
r Table 7 Statistical properties of the distribution (Figure 16)

<P(g*)>j = j th moment = ^°°g*jP(g*)dg*

g* = mean = ^°°g*P(g*)dg*

£j = j th central moment = / (g*-g*)JP(g*)dg*

C2 = <P(g*)>2-<P(g*)>l
C3 = <P(g*)>3-3<P(g*)>l<P(g*)>2+2<P(g*)>1

standard deviation SD = (20'5

coefficient of variation CV = SD/g*

skewness = K =

rate of a crystal assumed as a property is usually determined from the gradient

of the crystal size-time variation. Randolph and White112 in their modelling

of such growth behaviour pointed out the close analogy between growth rate

dispersion and axial dispersion in near plug flow reactors. The mixing

processes are statistical in nature and represented by the diffusion type

equation in the dispersion models which provide a macroscopic description of

a chemical reactor to quantify the backmixing characteristics. The dispersion

effects in crystallization due to random fluctuations in growth rate and flow

can be described analogously by the macroscopic population balance for an

isothermal batch crystallizer as

dn , f\dn n
W + G~5L = DG

The growth dispersion model represented by equation (58) takes the form of a

one dimensional second order partial differential equation and is characterized

by two model parameters, XJ the average linear growth rate and DQ the

effective growth rate diffusivity. With the assumption of constant

supersaturation throughout the run and size independent growth the average
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growth rate may be a time and space average value. A dispersion coefficient

will in general be a function of both system properties and flow situations and

be non-isotropic in character. However, the effective growth rate diffusivity

used in equation (58) is assumed to be size and position independent within

the system and will be assumed to characterize uniquely the degree of

non—ideality present as a consequence of random fluctuation in growth rates.

Selection of the boundary conditions to describe the physical situation

mathematically is also important. Several sets of boundary conditions have

been suggested to describe the dispersion model in chemical reactors!13 In

general, a minimum of two boundary conditions or constraints is necessary

although an unconstrained general solution is sometimes possible.

The first condition is for the flux entrance (by an initial impulse in the present

case) and may be represented as

n(L,0) = f(L) (59)

where f(L) is the initial seed CSD. For the specific case where the crystallizer

is seeded initially with narrowly sized crystals obtained, for example, from the

material retained between two adjacent sieve sizes, differing by ALo and

having mean size Lo, the seed population density will be assumed to have a

point value of no at Lo determined by

n o =

In this case f(L) will be

f(L) = noALo<5(L-Lo) (61)

The form of function f(L) may also be derived by measurement of the initial

crystal size distribution. Its specific form is unimportant in the most of the

techniques discussed subsequently.

The second condition may be derived from the assumption of a semi—infinite

continuum for the population density function which for infinite size must
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Table 8: Methods available to determine parameters of the dispersion

model (equation 58) by pulse stimulus response analysis

Time domain

1.Method of moments

(a)with respect to characteristic length

(b)with respect to time

2.Characteristic points

3.Optimization methods114'115

Laplace transform domain

1.Method of moments in time domain

2.Four methods of Michelsen and Ostergaard116

3.Method of Abbi and Gunn115

4.Numerical integration or inversion of Laplace transform115

5.Optimization methods117

Frequency domain

1.Method of moments from frequency response

2.Method of Abbi and Gunn115

3.Method of Rosen and Winsche118

4.Optimization methods114'119

tend to zero, i.e.,

n(oo,t) = 0 (62)

6.1 Parameter Characterization

A number of methods can be used to characterize the parameters of the

dispersion model (equation 58) from the pulse stimulus response as has been

used in chemical reactors. These are listed in Table 8. Some of the available
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methods will be discussed and in some cases the applications to the specific

experimental data illustrated.

6.1.1 Time domain methods

6.1.1.1 Method of Moments

The use of moments in system response analysis for parameter estimation in

linear models involves matching moments of the system model output to like

moments of experimental data. The kth moments of the population density

distribution about the origin obtained by moment transformation with respect

to size can be defined as

mk = p i I A d L (63)

Randolph and White112 employed such a moment transformation technique in

modelling size dispersion effects in crystallizer configurations. Tavare and

Garside108 used first and second central moments of the observed population

density distribution of the product from a fluidized bed crystallizer that had

been seeded with a narrow size distribution. The model parameters were

characterized as

G = ^ (64)

and
CT?

where AL and ACT^ are the differences in initial and final average size and

variance respectively over a batch time T. This is an example of a

representation type of problem where the input functions are known.

Following the treatment suggested by Aris120 the same analysis can be

extended to an identification type problem where the form of input forcing

function need not be known. In this case the application of equations (64—65)
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requires measurements of L and <J2 a t two separate times differing by r so as

to evaluate AL and Aof. Thus both single and two shot methods can be used.

In single shot methods the response at any one time after the impulse is used

and the mean and variance relative to the initial impulse evaluated from the

first and second moments. In two shot method the responses at two different

times after the impulse are determined and the corresponding differences in

mean and variance of the distribution calculated. Average growth rates and

their diffusivities are then evaluated by equations (64-65).

If the following dimensionless variables are defined as

x = L/Gr T = t / r y = nG/B

the growth dispersion model (equation 58) can be rewritten in terms of

dimensionless variables as

with boundary conditions for flux at zero size

y(T,0) = f(T) (67)

and for initial CSD

y(0,x) = 0 (68)

In order to have finite values for all y and remain bounded

y(0,a>) = 0 (69)

Taking the Laplace transform of equation (66) with respect to T

[ p i D 2 - D - p ] y ( p 1 x ) = -y(0,x) (70)
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Solving for y(p,x) and using the boundary conditions, we get

y(P,x) = I (p)exp[{%Wl+(4p/Pe) )}x] (71)

Now assuming that the moments of f(T) exist i.e. flux at zero is finite and

function of time and I(p) and also y(p,x) are analytic at origin the Ath moment

of y(T,x) with respect to T can be defined as

Uk = Jy(T,x)TkdT = ( - l ) k ^MMl (72)

K o dpn p=0

Using equation (72) the moments can be evaluated as

U0(x) - y(0,x) = 1(0) = UOo (73)

Ui(x) = 4(0) + I(0)x (74)

Assuming 1(0) = UOo = Uo(x) = 1

Ux(x) = (Ui(x)-Ui(0))/U0(x) = x (75)

U2(x) = f(0)-2xf(0)+x2f(0)+(2x/Pe)I(0) (76)

= I(0)+x2+2x/Pe (77)

Here we assume Ui0 = —1(0) = 0 and Uo = f(0) = 1.

Thus the changes in the mean and variance for the growth dispersion model

(equation 58) are

p = Ui(x) = x

and

= U2(x)-Ui(x)2-ag = f(0)+x2+(2x/Pe)-x2-f(0)

= 2x/Pe (78)
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Table 9: Growth rates and growth rate diffusivities calculated from
moment transformation with respect to size in the time domain
for potash alum for Ac = 0.0055kg hydrate/kg solution at T
=303 K.

At, s L, (im G, /jm/s D , /jm2/s

0-150
0-285

150-285

16.6-19.7
16.6-23.2

19.7-23.2

0.020
0.022

0.025

0.09
0.08

0.08

Although the original experiments were used by Garside and Jancic121 to

characterize the growth kinetics of small (<~40 (an size) crystals the same

results can be used to characterize the growth and growth dispersion

parameters. The results in their Figure 3 shows results obtained from an

experiment performed in a 250 mL isothermal batch crystallizer seeded with

small potash alum crystals obtained either from an operating continuous

crystallizer or from a careful milling operation. Constant supersaturation was

maintained. The results of growth rate and growth rate diffusivity are

reported in Table 9. The calculated values of G and D~ appear consistent

between the two calculation methods.

The use of lower (up to second order) moments is most convenient and

sufficiently accurate for the interpretation of response data because of the

smoothing effect of the integration process. As, in most cases, the product

CSD at longer time tends to a normal distribution and uncertainties in

measurement exist towards the tail of the distribution, use of higher order

moments is not reliable. Application of this method assumes that the

mathematical description is exact, provides no direct check of model validity

for the current system and is limited in model discrimination when several

alternative descriptions are available.
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Figure 17 Evaluation of Peclet number and growth rate diffusivities

Tavare and Garside122 suggested a two shot method to characterize Peclet
number for crystal growth (Pe = DG/G T) using the difference between

dimensionless variance. They used the data from two experiments conducted

in a differential mode under otherwise identical conditions, differing only in

batch time for crystallization of potassium sulphate crystals in a fluidized bed

crystallizer. Dimensionless population density plot on linear scale for these

two runs is shown in Figure 17. The calculated Peclet number in this case (Pe

= 7.4) is comparable with those values (Pe = 15.4 and 4.9) calculated by the

method of moments used on single run measurements.

6.1.1.2 Characteristic points

Aris123 showed that the response of the most general dispersion model with its

large number of parameters also approaches a normal distribution for larger

times. Certain characteristic points of this distribution such as the maximum

and points of inflection can be used in evaluating approximate values of the
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Or

"D 0 61 nn
c
o

D.

Seeds

i!
68% of total
area under
the curve

I I

Figure 18 Use of characteristic points: Response from a spike

impulse of a population Bo/G at Lo

n(t,L) = 2

n . = ?r

parameters as illustrated in Figure 18. Growth rate diffusivity determined

from the width at the inflection points of the experimental population density

measured at the end of the growth run for potash alum in a small batch

crystallizer is 0.07 /mi2/s. This is in fair agreement with results obtained from

the method of moments (Table 9). Such determinations only provide order of

magnitude estimates as they use a very limited amount of information and

characteristic points are often difficult to define with precision.
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6.1.2

TAVARE

Laplace Transform Domain Methods

It is often advantageous to estimate model parameters in the Laplace

transform rather than the time domain. The transfer function for any stable

linear one dimensional system can be evaluated from the experimental

response using the imperfect pulse method by numerical integration of the

transient response to an arbitrary forcing function measured at two points (as

in identification problems). The experimentally determined transient response

can be converted into moments of the form

r< n d t - ( i)ndnn(p,L)
dt"

(79)

where

n = / n(t,L)exp(—pt)dt (80)

The Laplace transform and its derivatives are related to the system transfer

functions, F, through the relations

n(p,L2)
n(p,Li)

(81)

n(p,L)
(82)

L2

Li
(83)

or in general

d"(F/F) Td" fn(p,L)]
"^P""^ Ldp

nU(p,L)J Li
(84)
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The right hand sides of these equations can be evaluated by computation of

moments, Mn'p, so that F and its derivatives may be determined for an

arbitrary number of p values. The values of the transfer function and/or its

derivatives may then be used to check the validity of the system model and

evaluate the parameters within the model. The system transfer function for

the growth dispersion model (equation 58) obtained by taking the Laplace

transform under the conditions represented by equations (59-62) can be

derived as

(85)

where

q = ^ [l+(4DGp/G7)] (86)

and AL is the difference between L2 and Li, the two sizes at which the

population density as a function of time will be determined. The logarithmic

transfer function, its derivatives, moments and the model parameters are

related by

(87)

Gq

and

M2lP fM1 ) P12] L2

_ 2 D G A L

G 3 q 3

Parameter evaluation for a model containing r parameters requires calculation

of at least r moments. It will normally be advantageous to compute a large
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number of moments and evaluate the parameters by statistical analysis

because the validity of the system model can thereby be assessed.

6.1.2.1 Method of Moments in Time Domain

Moment transformation of equation (58) with respect to time can also be

carried out in a similar way to that used for size. However these moments can

be derived easily from the Laplace transform domain by using the evaluations

of derivatives at p = 0 in the general equation (equation 84). Thus

(90)P=O LMo,oJ|Ll

U2 = ~ ^ — " 2 = u
3 • (91)

P=O L M ° ' ° ' '" " ~

Equations (90—91) can be used to determine G and D from experimental

data of population density as a function of time at two sizes AL apart.

6.1.2.2 Methods of Michelsen and Ostergaard116

These are modifications of the moments method in which the moments of the

response are modified by a damped exponential weighting factor to minimize

error magnifications towards the tails of the response. Four methods are

suggested:

(i)If the moments M°'p and MllP are available simultaneously for any p the

model parameters can be obtained from

A L _
U0 + 2pUi
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GAL_U o (Uo+2pU 1 )

these equations being derived from equations (87—88).

(ii)If the moments M°'p, MI l P and M2)P are calculated for any p

simultaneously from the response the model parameters may be deduced from

« >

These results are formulated from relations (88-89).

(iii)Equation (87) can be modified to

1 _ ALp DG (QRs

— 77- = S (96)
W° G U0 GAL

Thus if the moment MOlP is evaluated for a number of p values a plot of —

1/Uo versus p/Uo2 gives straight line of slope AL/G and intercept - D /GAL

on the ordinate.

(iv)Equation (88) may be rewritten as

U? AL2 AL2

If the moments MOlP and Ml l P are available for a number of values of p a plot

of 1/Ui against p thus yields a straight line of slope 4D p /AL and intercept

G2/AL2.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
5
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



174 TAVARE

6.1.2.3 Method of Abbi and Gunn115

These authors expanded the square root term in the expression for q

(equation 86) using the binomial theorem. When used with equation (87) this

gives

2Dnp 2D-V

Using only the first three terms in the expansion this can be written

. D A L AT

(98)

(99)

Because of the limitation of the accuracy of this approximation equation (99)
2q

_ 2
G

_ 2

will only be an accurate representation provided 0<4DGp/G <0.2-0.4 so

establishing an upper bound to the values of p. Given this proviso equation
_ _ 3

(99) represents a straight line with intercept —AL/G and gradient DQAL/G .

One of the obvious advantages in using the Laplace domain methods is that

the sensitivity to experimental errors in the determination of the transient

response is greatly reduced provided suitable values of the Laplace transform

variable, p, are used. If the chosen value of p is too small the tail will be

heavily weighted whereas if it is too high, too much emphasis will be given to

the front portion of the response. In either case a poor estimate of weighted

moments will result. Michelsen and Ostergaard116 treated the problem of

finding the optimal p values by using the noise sensitivity function and

suggested that the optimal values of pt for the first and third of their methods

is in the range 0.5-2 while for the second and fourth methods it is close to

unity. Anderson and White124 empirically proposed that the optimum weight

factor for use with the kth moment in an identification type problem can be

defined as

Popt = 2(kav+l)/(ti+t2-At) (100)
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where ti and \z are the mean times of the distribution at sizes Li and L2

respectively, At = t2 - ti and kavg is the order of the moments used to

estimate these parameters (i. e. kavg = 0.5kmax). Hopkins et al!25 pointed out

that the use of low pi values provide no information on model discrimination

as most of the models will have more or less the same response in dispersion

characterization and recommended that, to have consistent results, the

suitable range of pt for flow through packed beds is 2—5. However, Abbi and

Gunn115 argued that, for a given model, there is no particular merit in this

suggestion as the relative weighting of the points within the range, particularly

towards the lower end, is influential.

The cross plots of the published experimental population density — size data at

various sample times are shown in Figure 3 of Tavare and Garside109 and

represent the variation of population density with time at two different values

of size. The values of G and D_, obtained from the data of Purves and

Larson" in their Figure 3 using several methods are reported in Table 10.

Derived values of G and D from the Laplace transform domain methods are

very sensitive to the range of p. In the first of the methods suggested by

Michelsen and Ostergaard116 the results are evaluated from the moments up to

first order whereas the second utilizes the second order moment variant thus

the first method usually resulting a better estimates in all cases. In general,

inaccuracies in evaluating higher order moments will be more severe than for

the first order moments so that methods using lower moment variants are

likely to produce better performance. The optimal range of p suggested by

Michelsen and Ostergaard116 (0.5<pt<2) requiring an elaborate calculation

procedure in addition to knowledge of the noise function seems precise. The

suggestions of Anderson and White124 and Abbi and Gunn115 involve simplified

calculations and yet provide fairly similar estimates to those obtained by the

procedure of Michelsen and Ostergaard!16 In formulating the linear regression

to estimate the parameters using the remaining methods (equations 96,97,99),

the limits on p values (i.e. pt up to 3) suggested by Michelsen and

Ostergaard116 on the basis of their analysis seem appropriate for the linear

regression. The constraints suggested by Abbi and Gunn115 for accurate

representation of the square root term in equation (85) by the binomial
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Table 10: Growth rates and diffusivities estimated using various methods for

potassium nitrate9 9

Methods

1. Time domain

(a)moments

(b)characteristic points

2. Laplace transform domain

(a)moments

(b)Michelsen and Ostergaard116

0)
00
(iii)

(iv)

(c)Abbi and Gunn115

3. Frequency domain

(a)moments from the

frequency response

(b)Abbi and Gunn115

(c)Rosen and Winsche118

eqs used

64,65

90,91

92,93

94,95

96

97

99

107,108

106,112

G, /nn/s

~0.15

0.53

0.54

0.52

0.55

0.51

0.54

0.55

0.55

D Q , /xm2/s

~1.2

0.6

0.78

0.68

0.79

0.38

1.19

0.55

0.03

0.04

theorem also provides a satisfactory choice of the maximum allowable p values

(i.e. pmax = 0.1G2/DG).

Although the correlation coefficient r of (—1/Uo) upon (p/Uo ) in the linear

regression was very close to unity for the chosen range of p for the system, the

value of D Q had to be calculated from very small values of the intercept. The

correlation representing equations (97,99) are reasonably good for the system
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although significant curvature was apparent in some cases. Such curvature

might arise either because the dispersion model did not adequately represent

the data or because the quality of the experimental data itself was

unsatisfactory. Nevertheless, the representation of the results was sufficiently

good to encourage further work along these lines.

6.1.3 Frequency Domain Methods

Frequency response testing is another classic technique used for parameter

estimation and design in linear control systems. The frequency response

transfer function of a stable linear one dimensional system to an impulse

forcing function is simply the Fourier transform of the time domain response

(or the Laplace transform with p = iwin equation 80); thus

n(iw,L) = /°°n(t,L)exp(-iwt)dt (101)
o

or a complex sum of Fourier sine or cosine transformations

n(iu,L) = /°°n(t,L)cos(a)dt -i/"°n(t,L)sin(wt)dt (102)
o o

The frequency response transfer function can be related to moments by using

the series expansion for the sine and cosine terms in equation (102) and the

definition of non-central moments of the population density with respect to

time as

n(io>,L) = no -fi2 ^ j + H f r

(103)

The magnitude and phase angle of the frequency response transfer function can

be directly related in terms of central moments by comparing with the basic

definition of cumulants of a density function as

ln|n(iw,L)| = vo-v^[+.... (104)
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and

L fi(iw,L) = -uxu + i/3jj - . . . . (105)

Examination of equation (104) reveals that the modulus of the transfer

function |n(iw,L)|, i.e. the magnitude ratio, is expanded in terms of even

central moments, the first two being the gain and the variance of the system.

The argument L n(iti;,L) or the phase shift given by equation (105) is expanded

in terms of odd central moments, the first two being the mean and the

skewness of the distribution. Since the impulse response of many systems

under test tends towards a displaced normal distribution of negligible

skewness, the phase shift becomes that of a pure time delay (as in plug flow

configurations), i.e.

L n(iw,L) « - v^i) (106)

Clearly, if |n(iw,L)| and L n(iw,L) have been obtained by pulse testing and

conversion to the frequency domain, the moments estimated by curve fitting

to |n(iw,L)| and L n(iw,L) can be no more accurate than those that would be

obtained by direct moment analysis of the time domain data.

6.1.3.1 Method of Moments Derived from Frequency Response

By analogy with the Laplace domain the relationship between frequency

response and the central moments with respect to time can be established as

( }

AL
2D^

ff2 = - I i m [ S g l l ] = —^ u—»o l au)1 G

where

F = n(iu;,L2)/n(iw,Li), L F = absolute phase shift and | F |

magnitude ratio.
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From the practical point of view computation of impulse response moments by

differentiation of an experimental frequency response in the region of zero

frequency is however likely to be even more prone to error than direct

estimation of moments.

6.1.3.2 Method by Abbi and Gunn115

The amplitude ratio, AR, of the frequency response transfer function can be

determined from the experimental response of the population density as a

function of time at two sizes from equation (81) using

AR= |F| = [(C2C0fg)t ^ C ' - C ^ f (109)

where Ci and Sj are the cosine and sine Fourier transforms of the population

density at size Li. The experimental AR has to be determined by numerical

integration of the time domain transient response to an arbitrary impulse

forcing function measured at two sizes. The argument or the absolute phase

shift can be defined as

_ / p - S2C1—SiC2pe

The model amplitude ratio, AR, derived from equation (85) after substituting

p = iwis

For relatively small u the right hand side of equation (111) may be expanded

by the binomial theorem giving

(112)

which is identical to equation (104) with vQ = 0.
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A plot of In AR against ufi will therefore give a straight line through the
— 3

origin, with slope —D^AL/G for a range of small values of u). Similarly, a

plot of the phase shift, PS, against u will yield a straight line through the
origin with a gradient AL/G.

6.1.3.3 Method by Rosen and Winsche118

These authors suggested that a plot of the ratio [ln|F|/Z, F], i. e. (In AR)/PS

against w, will be linear with — (t/2/2!i/i) when (^4-^2^3) is negligible over the

range of w encountered. Such an analysis requires a larger mean residence
_ 2

time for reliable results. The slope of the plot which equals - D G / G in the
present case can then be used to determine the growth diffusivities, if the

growth dispersion model is applicable.

As frequency domain techniques are similar to those in the Laplace domain a

suitable range of w is also essential while deriving the parameters from the

transients response. Jeffreson119 suggested the parameters fitting should be

carried out over the range of frequencies decided by 0<wl<l as the higher

order terms in equations (104,105) will make a negligible contribution to

summation over the smaller frequency range. If such a range is used the

frequency response will yield identical parameters to the time domain moment

analysis, provided the experimental data actually fits the proposed model, so

giving evidence of model validity. It was also pointed out that the suitable

time interval for numerical integration should be less than 10% of the

minimum half period. Clements and Schenelle126 and Johnson et al!27

suggested that the maximum allowable theoretical frequency range will be

decided by the normalized frequency content. If this approaches the order of

magnitude of experimental error the reliability of the frequency domain

estimates is hampered. For systems whose response times are larger the

normalized frequency content will always be greater than the experimental

error for all u and will not provide any suitable range for an idealized input

forcing function.
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The final results of regression analysis of equations (109, 110, 112) using the

appropriate range of w as suggested by Jeffreson119 (i.e. 0<uX< 1) in the

frequency domain methods for the data set of Purves and Larson" are

included in Table 10. The amplitude ratio for this data set is little over unity

in the vicinity of u -» 0 so the gradients yielded negative values giving

unrealistic parameters.

In general the techniques discussed in Table 10 are simple and illustrate an

important point, viz., that it is normally necessary to try several approaches

to analyze data from an experimental test. The parameter technique which

will produce the most consistent parameter estimates will depend on the

quality of the data and the form of the model. The techniques based on the

Laplace transform and frequency domain are less sensitive to experimental

errors and the numerical techniques used for the integral evaluation. The

Laplace domain methods can be used to estimate the dispersion parameters

from pulse response analysis because of simplicity, rapidity and reliability.

The several methods used in the determination of crystal growth dispersion

characteristics by dynamic response analysis in crystallization systems can

conveniently be grouped into three classes; utilization of analytical relations

between the process coefficients and certain integrals of the response such as

the method of moments, examination of the functional dependence of the

coefficients upon parameters involved in the integral such as p or a> in addition

to the analytical relations and minimization of the variance of the

experimental measurements about a theoretical curve, the use of first two

classes being demonstrated in this study. Third class can also be considered

for the specific case by choosing the model parameters, i. e. G and DQ,

associated with the minimum variance derived through optimization

procedures. The variance may be calculated in time by numerical integration

of the partial differential equation or by inverting the process transfer

functions in the Laplace transform or the frequency domains. Although the

methods using optimization procedures are potentially the most accurate and

precise they demand more computation time and complexity when iterative

techniques have to be adopted.
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6.1.4 Growth Rate Activity Distribution

The growth rate model suggested by Klug and Pigford22 in terms of the

growth rate activity and the driving force (equations 56-57) can be used to

derive growth and dispersion parameters in terms of moments of the unknown

growth rate probability distributions from a seeded or unseeded batch

crystallizer with time—varying supersaturation, using the stochastic model. In

addition to the conventional population density function, n(t,L), representing

the entire population of crystals in the crystallizer let n(t,L;g*) be one of

subpopulations, in which every crystal has the same value of the growth rate

activity, g* then it follows that

n(t,L) = pj( t ,L;g*)dg* (113)

The population balance equation for a subpopulation of crystals with growth

rate activity, g*, in a batch crystallizer as

+ gMg.TjdgfW) = 0 (114)

By defining the new transformation variables as

0=jV,T) or£f=^a,T) (115)

equation(114) becomes

aa(9,L;K*)
D ' ' n 'DQ g

The relation between 0 and the sampling time, t can be determined from

equation(115) by numerical evaluation of the integral and the population

density, n(0,L) can be determined from the size analysis of the suspension

samples. The relationship between the time dependent moments of the crystal

size distribution and the moments of unknown growth rate activity

distribution, P(g*) can be developed as follows:
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The jth moment of the population density is defined as

mj(0) = ^°°Lin(0,L)dL (117)

Using equation(113), we get

mj(0) = fdh pJn(0,L;g*)dg* (118)

Taking time derivatives of equation(118) yields

( n 9 )

With the population balance equation (equation 116) this equation becomes

g ,y t L;R*) dg# (120)

and integrating by part yields

$$@i = jfdL ^LJ->g*n(0,L;g*) dg* (121)

The numerical solution of population balance equation (equation 116) by the

method of characteristics reveals that the crystal population density,

ii(0,L;g*) is constant along characteristic lines of slope g* in the 0-L plane.

The crystal population density of each subpopulation simply translates along

the axis L unchanged in shape or proportion. After a certain increment of

transformed time 0 all the crystals with growth rate activity g* will have

experienced an increase in size equal to the product of g* and the increment in

transformed time, 0. Let A be equal to the initial value of L at time zero such

that n(0,L;g*) = n(A;g*). At any time the size L = A + g*0. Using this in

equation (121) we get,

*)dg* (122)
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As g* is determined randomly when a crystal is nucleated or introduced as a

seed then the following expression holds

n(A;g*) = P(g*)n(A) (123)

Substituting this expression into equation (122) yields

3 $ ^ - = jf(A+g*e)Wn(A)dA fg*P(g*)dg* (124)

From equation (124) the moments of the unknown growth rate activity

distribution, P(g*), can be determined directly from the experimentally

measured crystal size distributions.

From equation (124) for j = 1

>1 (125)

Integrating both sides with respect to 0 yields

mi(01_nijioi = 0 < p ( g + ) > i (126)

For j = 2 after rearranging equation (124) we get

j j § 2 ^ = 2jXn(A)dAJg*P(g*)dg* + 2©f n(A)dAfg«P(g*)dg*

= 2[mi(0)<P(g*)>i + 0mo<P(g*)>2] (127)

Integrating equation (127) with respect to 0 yields

^ l © l _ g ( 0 l = 20Si(Ol<p(g*)>1 + 02<P(g*)>2 (128)

For j = 3

§ M = 3j" A»n(A)dAJg*P(g*)dg*
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Table 11: Moments of growth rate activity distributions for anhydrous
sodium sulphate crystals (Klug and Pigford22)

seeded

<P(g*)>l <P(g*)>2
/<m/min (/mi/min)2

20

22

19

430

540

430

Unseeded

<P(g*)>3 <P(g*)>l <P(g*)>2 <P(g*)>3
(/jm/min)3 /im/min (/m/min)2 (/im/min)3

10 000 4.7

15 000 6.8

10 000 7.1

27

82

59

210

510

570

= 3m2<P(g*)>i + 60mi<P(g*)>2

Integrating equation (129)

302mo<P(g*)>3

(129)

03<P(g*)>3 (130)

The three algebraic equations (equations 126, 128 and 130) can be solved to

determine the first three moments of the growth rate activity distribution

from the moments of the experimentally measured size distribution.

Typical results obtained from the measured size distribution from a batch

crystallization of anhydrous sodium sulphate crystals with and without seeding

as evaluated by graphical solution of algebraic equations (equations 126, 128

and 130) are reported in Table 11. All the moments for the growth rate

activity distributions for this system have higher values in the case with

seeding than those for the case without seeding. Thus experiments with the

batch crystallizer showed that seed crystals added to the crystallizer grew with

less growth dispersion and higher average growth rates than did the crystals

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
5
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



186 TAVARE
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Figure 19

1 2 3 4
Dimensionless growth rote .g

Normalized growth rate distribution at three levels of

undercoolings

nucleated in the crystallizer. It was speculated that surface roughness of the

seed crystals produced during their preparation and screening was responsible

for this effect. Bohlin and Rasmuson128 reported simulation studies of growth

rate dispersion phenomenon in a cooling batch crystallizer accounting for

primary, magma density dependent secondary nucleation and growth rate

dispersion with constant crystal growth rate at different growth rate activities.

The effect of growth rate dispersion and the shape of the growth rate activity

distribution on the crystal size distribution was significant under certain

conditions.

Berglund and Larson129 reported a study of contact nucleation of citric acid

monohydrate in a contact nucleation cell, the growth rate distributions being
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formulated in the form of a gamma distribution. Figure 19 presents

normalized growth rate distributions at three levels of undercoolings (1,2 and

3 K at 303K, Table 3 of Berglund and Larson129), the value of the suffix

representing their respective undercooling. These expressions can be used in

deriving the normalized batch population density function for product crystals.

7. EVALUATION OF AGGLOMERATION KINETICS

Although the presence of agglomerates is fairly common the phenomenon of

particle agglomeration and its characterization in such systems are not well

understood. A number of recent studies'30~152(and see also Table 4 in

Tavare153) provide illustrations of either numerical simulation techniques or

characterization of kinetic rates in continuous, semi—batch and/or batch

laboratory scale process units. The formation of agglomerated precipitates is

usually linked with solution phase physicochemical and hydrodynamic

interactions and the kinetic events are influenced by the environmental

conditions. An understanding of the nature and extent of the effects of process

parameters on the precipitation kinetic events may have implications for the

development of design and operation guidelines. In this review the

characterization of agglomeration kinetics will be illustrated with silica

precipitation performed in a semi—batch crystallizer152 as the results will be

applicable directly to a batch reactive precipitation system. Furthermore

reactive precipitation can be a useful paradigm for other agglomerating

precipitates in food and pharmaceutical processes.

7.1 Reactive Precipitation

The manufacture of precipitated silica is essentially a neutralization process

and can be represented by an overall reaction as

Na2O (SiO2)x + H2SO4 » xSiO2 I + Na2SO4 + H2O (131)
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It is usually carried out in two stages. The first stage, generally termed

primary neutralization, constitutes a sol formation under alkaline conditions,

in which the two reactants are added to a pool of water in such proportions

that the pH of the system (or the degree of neutralization) is maintained at a

constant value. The second stage, the secondary neutralization, involves

addition of further acid in order to achieve complete neutralization. The sol is

generally aged for some time prior to the second acid addition. Thus the

overall process involves a discontinuous semi-batch operation.

Both solution chemistry during neutralization of silicate solution with acid and

subsequent precipitation of silica are quite complex. Generally

polymerization, i.e. the reactions that result in an increase in molecular weight

of silica under a variety of process conditions, involves the condensation of

silanol groups to give molecularly coherent units of increasing size either of

spherical particles of increasing diameter or aggregates of an increasing

number of constituent particles. Several analytical and empirical approaches

based on polymerization studies have been suggested!54 The present study is

concerned with the production of precipitated silica using mainly the

industrial recipes and follow a process route under restricted operating

conditions. The neutralization reaction between sodium silicate (alkali, B)

and sulphuric acid (acid, A) for this manufacturing process may be considered

as an elementary homogeneous archetype reaction

A + B > products (132)

and the rate of disappearance of A or B by reaction may then be represented

as

= rB = k'CACB

This representation of polymerization reactions by homogeneous reaction

under restricted conditions and recipes may be reasonable. Under these

experimental conditions almost all the product silica is in precipitated form

rather than in gel form. A variety of techniques based on an empirical curve

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
5
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



ANALYSIS OF BATCH CRYSTALLIZERS

4

189

CO

o

*-*
c

o

C 1
O I

o
(0

kr oo 2 L/mol s

slope = 0.011 wt%/s
intercept = 0.17 wt%

O Run C
A Run D
0 Run E
D Run F

0 100 200
Time, t(s)

300

Figure 20 Initial silica concentration profile: reaction kinetics

fitting procedure have been suggested to characterize a rate equation!55 In the

present case the rate constant in equation (133) can be evaluated by the

method of initial rates determined from the concentration profiles of the

solution silica in an initial period of the run where only neutralization occurs

with negligible subsequent precipitation. Figure 20 shows an enlarged section

depicting the solution silica concentration during the initial period of

experimental runs. This concentration profile for initial period yields an

approximate value of rate constant in equation 133 around 2.0 L/mol s. The

reaction rate constant appears less than that for acid-alkali neutralization.

This low value of the apparent reaction rate constant is probably due to

complex physicochemical processes occurring in the liquid phase.
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7.2 Population Balance

Precipitation processes often result in an agglomerated product.

Agglomeration processes can be represented in the population balance by birth

and death functions formulated on the basis of an empirical description and

ensuing that they are written to ensure the principle of internal consistency.

Although the precise mechanisms of agglomeration processes are difficult to

model conceivably a simple mechanism based on two body collisions has

generally been used in formulating the rate models (see for example Table 4,

Tavare153). The agglomeration model proposed by Liao and Hulburt156 used

characteristic length as an additive property and provided analytical solutions

for a continuous MSMPR crystallizer (see also Tavare et al!57). Hartel and

Randolph130 presented their formulation in terms of crystal volume

coordinates rather than the crystal size in order to incorporate aggregation and

rupture terms in their numerical modelling of calcium oxalate aggregation

behaviour. Hounslow et al!35 and Hounslow140'141 in their numerical

discretization scheme used a classical population balance approach in crystal

size coordinates, transforming the conventional birth and death functions

expressed in terms of crystal volume as the internal coordinate to the length

based form. Tavare and Garside152 in their study of silica precipitation in a

semi-batch crystallizer used crystal volume coordinates.

For a perfectly mixed vessel the population balance equation in volume

coordinates is

(134)

where nv is crystal population density function expressed as a function of

crystal volume (no/m3 kg) and Gv is the overall volume growth rate assumed

for the sake of analytical simplicity to be crystal volume independent at least

over small time interval. As the total working volume of the batch vessel is

time varying the population density and other specific quantities, as used in

crystal size domain, will be defined on the basis of total solvent capacity in
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working vessel volume at any time and represented by a - over the

corresponding symbol. For example volume population density nv will be

expressed as no/m3. Bv and Dv represent the empirical birth and death

functions over a volume between v and v + dv such that (Bv — Dv)dv

represents the net appearance of particles most probably by aggregation

mechanism between v and v + dv. The aggregation of two particles of volume

u and v — u into a particle volume v can be represented by the birth and death

functions

Bva = 5 / /?'(u,v-u)nv(t,u)nv(t,v-u)du (135)
1 o

and

Dva = nv(t,v) / /2'(u,v)nv(t,u)du (136)
0

The agglomeration kernel /?(u,v-u) defined as

/?(u,v-u) = /?'(u,v-u)S (137)

is a measure of the frequency of collisions between particles of particle volumes

u and v—u that are successful in producing a particle of volume v. The factor \

in equation 8 ensures that collisions are not counted twice. The agglomeration

kernel /?(u,v-u) depends on the environment surrounding the agglomerating

crystal and accounts for the physical forces that are instrumental in the

mechanism of aggregation, which decides its functional form. Although many

theoretical and empirical formulations of the agglomeration kernel have been

proposed to describe the various mechanisms of aggregation (see for example

Drake158, Hartel and Randolph130, Hounslow et al!35) the agglomeration

kernel is assumed to be crystal volume independent, at least over small time

interval used for parameter identification of dynamic processes. When

monodispersed spherical particles coagulate under the influence of Brownian

motion the agglomeration can be independent of crystal volume. Both

theoretical130'135'158 and experimental143'144'159 evidence suggests that the

agglomeration kernel depends on crystal volume (or size).

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
5
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



192 TAVARE

For an unseeded batch crystallizer the pertinent boundary conditions to the

population balance equation (equation 134) are

nv(0,v) = 0 (138)

and

nv(t,0) = Bvo/Gv (139)

where Bvo is the nucleation rate of precipitate at near zero crystal volume.

Equation 139 suggests that the particle flux of newly generated crystals added

to the particulate system occurs at a vanishingly small volume very close to

zero.

7.3 Moment Transformation

Following the treatment by Hulburt and Katz80 the moment transformation of

the population balance equation (equation 134) (in crystal volume coordinate)

with respect to crystal volume, i.e., multiplying by vi and integrating each

term of equation 134 with respect to v over entire crystal volume range (0 —

oo), yields a set of ordinary differential equations in ^vj(t) having the form

o (J) /Wvj
j = 0,1,2,... (140)

where (J) is the binomial coefficient given by

Moment equations for the first three moments (up to second order) from

equation 140 are

(142)
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Gv/ivo (143)

= 2Gv/ivi + /?/M (144)

with boundary conditions

{iv-} = 0 at t = 0 j = 0,1,2 (145)

The population balance equation (equation 134) coupled with the moment

equations (equations 142-144) together with appropriate boundary conditions

represent the sufficient information about the batch reactive precipitation

process that is required in parameter identification of particulate system in a

reactive precipitation process.

7.4 Crystallization and Agglomeration Kinetics

The rate processes required to characterize an agglomerating reactive

precipitation process are crystal growth, nucleation and agglomeration which

can all be characterized by the method of moments analysis. In order to

characterize the apparent rates associated with the evolution of the particulate

system during the precipitation process several other techniques have been

reported previously can easily be extended to the process representation. The

experimentally determined population data can be converted into the

moments with respect to crystal volume using the definition of moments

/ nv(t,v)vJdv (146)
o

These moments of the experimentally measured population density data can

be used to determine the rates

Gv = _ ^ v j _ (147)
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(148)

and

f i/*'7'vo (149)

where A represents the difference in values of the corresponding quantity at

two different times and the overbar indicates an arithmetic average quantity.

These three relations are derived from the moment equations (equations

142—144) by converting the derivatives in the differential equations into

differentials. The average rates may be determined from the moments of two

sets of experimental population density data obtained during the course of a

batch experiment at times t and t + At.

Size distribution data obtained from the Coulter Counter measurements were

translated into volume population density to calculate the growth, apparent

nucleation and agglomeration rates via the method of moments analysis as

described above. A typical pair of population density plots and its

corresponding translation into volume population density curves are shown in

Figure 21. In general the other results for both specific (expressed as no/m L

or no/m3 L) and total (expressed as no/m or no/m3) population density

(based on either size or volume) show the expected movement of the

distribution with time, predominantly so during the sol formation step.

Normally the spread in volume population density appears relatively more

than that in size population density.

In order to estimate the rates using equations 147—149 the moments of

observed population density were evaluated numerically from equation 146 by

replacing the integral sign with summation. For all the runs results of

successful evaluations of growth, nucleation and agglomeration rates using the

method of moments analysis applied to successive population density curves

(and also alternate successive runs in the case of runs where several samples

with short time intervals were taken) can be evaluated along with other

parameters required in kinetic correlations. All the results obtained may be
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Figure 21 Population density plots in size and volume coordinates

correlated by empirical power law kinetic expressions in terms of observables

as in many cases it is difficult to determine precisely conventional correlating

variables like supersaturation and magma concentration during the

experimental programme.

The present results of volumetric growth rates appeared consistent with the

previously reported values of size growth rates as the previous average size

growth rate is ~ 0.5x10 m/s160 and its equivalent volumetric growth rate will

be ~ 2x10 m3/s. Perhaps both temperature and hydrodynamic conditions

may influence growth kinetics. The calculated diffusional mass transfer

coefficients for the present case using the literature correlations161 was ~

5x10 m/s and at 1 wt/wt % driving force the diffusional mass transfer rates

were ~ 5x10 m/s early in the process indicating the diffusional process might
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not be important in the primary neutralization stage. During ageing and

secondary neutralization stages the overall process appeared to follow the

equilibrium concentration profile suggesting that the surface processes were

important.

The formation and behaviour of silica precipitates appear to depend on both

chemical and environmental conditions. During the primary neutralization

process i.e. the sol formation stage it is believed that primary particles are

produced. These primary particles during their growth collide with each other

to form secondary aggregates. In various coagulation or flocculating systems

short range attractive forces are responsible for initially holding two particles

together. These attractive forces may be homopolar, metallic, ionic or van der

Waals forces and become important for submicron particle size. During the

ageing process the suspension is allowed to stabilize within itself by growth,

aggregation and break—up. In the secondary neutralization stage additional

silica produced is deposited on the existing surface allowing the particles to

form reorganized aggregates. Only small amount of silica is produced in the

secondary neutralization stage resulting in small changes in particle size or

volume distributions.

SUMMARY

In this review paper our understanding of the basic methods used in

determining crystallization kinetics and characterizing the phenomenon of the

growth rate dispersion has been summarized. This review is by no means a

comprehensive work but it does give an idea of diversity of techniques that

have been reported in the literature and illustrated in this review by numerical

examples. Every process design of a batch crystallizer should be based on

specific small scale tests with the liquors encountered and perhaps with the

final tests in the apparatus under the conditions that actually simulate large

scale equipment being considered or even in the plant equipment. Some of the

techniques reported in this review can directly be considered for the actual

industrial plant. Product specifications, system characteristics, economic
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considerations and special problems pertaining to the system are important in

batch crystallizer design and performance assessment. This review should

serve as a starting point for the rational design, understanding and better

utilization of batch crystallizers.

9 NOMENCLATURE

a coefficient in growth rate correlation, constant

a1 empirical constant

a, coefficients in polynomial

A_ total crystal surface area, m2/kg solvent

AR amplitude ratio

b nucleation order

b true estimates of p

b1 empirical constant

B nucleation rate, no/kg solvent s

B nucleation rate, kg solute/ kg solvent ss

Bv birth rate function, no/m3 L s

B v a birth rate function due to aggregation, no/m3 L s

Bvo nucleation rate, no/L s

BB step length bound

c concentration of solute, kg solute (or hydrate)/kg solvent,

mol/L, wt%

c' empirical constant, preexponential factor, kg solute/kg solvent

Ci cosine Fourier transform of population density function at size

L5

CV coefficient of variation, %

Ac concentration driving force, kg solute (or hydrate)/kg solvent

DG effective growth rate diffusivity, m2/s

Dv death rate function, no/m3 L s

Dv a death rate function due to aggregation, no/m3 L s

D diagonal scaling matrix

e exponent of the ratio of slurry voidage to solid voidage
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•I

Eg activation energy of growth process, kJ/mol

Gj jth coordinate direction

f dimensionless growth rate, G/G

f(L) seed CSD as a function of size

F transfer function in Laplace transform and frequency domain

ratio of surface to volume shape factor

F(p) objective function used for optimization

g growth rate order, dimensionless growth rate, G/G

g* growth rate activity, fim/s

g* average growth rate activity, /im/s

G overall linear growth rate, m/s

Gv overall crystal volume growth rate, m3/s

AH heat of crystallization, kJ/mol

i relative kinetic order

I impurity concentration, kg/kg

I identity matrix

j exponent of magma density, imaginary coefficient

J Jacobian matrix

J transpose of J

k coefficient of impurity concentration, kg/kg

ka surface shape factor

kb nucleation rate constant, no/[kg s (kg/kg)b*J]

kQ nucleation rate constant, kg/[kg s (kg/kg)b*i]

kd diffusional mass transfer coefficient, kg/[m2s(kg/kg)]

kg overall linear growth rate constant, m/[s(kg/kg)g]

k p growth rate constant, kg/[m2s(kg/kg)~g]

kv volume shape factor

K skewness

K relative nucleation coefficient, no/[kg s (m/s)'(kg/kg)i]

L crystal size, m,/im

LT Laplace transform of

L2,i length weighted average size, m,/zm

L difference between successive sieve or channel size, m,/im
m exponent of stirrer speed, number of observations
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mj jth non—central moment of population density with respect to

size, no mi/kg solvent

M suspension density, kg crystal/kg solvent

Mn'P nth weighted moment at p in Laplace domain with respect to

time

n population density, no/m kg solvent

n° nuclei population density at zero size, no/m kg solvent

nv crystal volume population density, no/m3 L

n(t,L) population density function at size, L and time t, no/m kg

solvent

n(t,L;g*) population density of subpopulation with growth rate activity,

g* at size L

n(p,L) Laplace transform of response population density with respect to

time

n(\Lj,L) Fourier transform of response population density with respect to

time

|n(iw,L) | modulus representation of n(iw,L) i.e. magnitude ratio

Z.n(iw,L) argument representation of n(it<;,L) i.e. phase shift

n(t,s) Laplace transform of response population density with respect to

size

n(t,iw) Fourier transform of response population density with respect to

size

| n(t,icj) | modulus representation of n(t,iw) i.e. magnitude ratio

Zn(t,iw) argument representation of n(t,iw) i.e. phase shift

N number of crystals, no/kg solvent; stirrer speed, rev/s

AN number of crystals retained over AL; difference in cumulative

number over AL

O() order of magnitude

p Laplace variable with respect to time, 1/s

P(g*) growth rate activity distribution

<P(g*)>j jth moment of growth rate activity distribution,(/mi/s)i

PS absolute phase shift

p direction of search vector

q function {= \ [l+(4DGp/G2)] }
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r correlation coefficient; reaction rate, kmol/kg s, mol/L s

R overall growth rate, kg/m2s

Rg gas constant, kJ/kmol K

s • Laplace transform variable with respect to size, 1/m

S solvent capacity, kg

SD standard deviation

Si sine Fourier transform of response population density

STEPMX an estimate of the Euclidean distance

t time, s

T temperature, K,'C; dimensionless time (=t / r )

u dummy variable for crystal volume, m3

v crystal volume, m3, //m3

Ui ith derivative of logarithmic transfer function

Uk moment of dimensionless population density with respect to

dimensionless time

V
w

W
AW

X

y
Y

Greek

a

a

0
0
01

6

S

A

t

£

volume of suspension, m3, L
weight percent

mass of seed crystals, kg, kg/kg solvent

weight of crystals retained on a sieve, kg

dimensionless crystal size, L/G r

dimensionless population density, n/n°; variable

observable dependent variable, i.e. response (equation 36)

Symbols

3/>c/2F, kg/m3

step length

ratio of initial concentrations of reactants

agglomeration kernel, kg/no.s

agglomeration kernel at any time for vessel volume, I/no s

delta dirac function

correction or improvement vector

differential, difference

solid voidage
residual vector, i.e. difference between Y and n
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/i mean

fi-s jth moment of population density with respect to time about the

origin, no si+1/m kg solvent

v\ jth central moment of population density, no mi/kg solvent

//vj jth moment with respect to crystal volume, no m3i/kg

p density, kg/L

pp density of precipitated silica, kg/L

r] expected value of Y a t x for given /?

A difference, differential

pc density of crystal, kg/m3

0(<T,T) dimensionless supersaturation function in the growth rate model

a supersaturation ratio =&h)

a2 variance of impulse response

T run time, s

u frequency, 1/s, Fourier transform variables, 1/m, 1/s

A particle size at time 0 = 0, /im; Marquardt parameter

0 new time variable, s

£j jth central moment of the growth rate activity

Subscript

A
B

b

E

f

L

N

p

0

P
s

sol

soln

S

acid
alkali, sodium silicate solution

bulk

end

final

at size L

newly generated, based on number

product, population

initial, feed, seed

precipitate

solution

sol phase

solution

silicate, seed, solute
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t

1,2
wm

Superscript

total
addition stages

weight mean

average or transformed quantities

equilibrium, critical

derivative with respect to a variable

quantities based on total solvent capacity

nuclei
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